

Contents
Data representation	3
Using binary to represent data	3
Integers	4
Real numbers	5
Characters	6
Vector graphics	7
Bitmapped graphics	7
Computer structure	10
Computer architecture	10
Program instructions	13
Translator software	13
Environmental impact	15
Security precautions	16
Firewalls	16
Encryption	16

[bookmark: _Toc482281627]Data representation

[bookmark: _Toc482281628]Using binary to represent data

The number 3862 in decimal (denary) means 		3 x 103 + 8 x 102 + 6 x 101 + 2 x 100

The number 110101 in binary means 	1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20

Decimal (or denary) means numbers are written in base 10 using the digits 0 to 9

Binary means numbers are written in base 2 using the digits 0 and 1

For example, a binary piece of data could be 10111001 or 10000010100101000100010110010001

Almost all data within computer systems is held in binary form. This is often referred to as digital data

Computer systems use binary numbers to encode all information because

1. Electronically it is easier to represent just two values

2. It is easier to build electronic circuitry for carrying out calculations when only two values are involved

3. The significant advances in hardware mean that it is possible to store and process enormous quantities of digital information (information that is held in codes made up of 1s and 0s)

How does a computer system know what 10000010100101000100010110010001 represents? Is it a piece of text? Is it a number? Is it a piece of audio, video or graphic?

It depends largely on what the computer is expecting! Each piece of data will carry a code indicating what type of data it is

Each type of data is stored in different ways

[bookmark: _Toc482281629]Integers

An integer is a number with no fractional part 	e.g. 76, 8945, 100006, 2

(n.b. National 5 does not cover negative integers)

How to turn an integer from decimal to binary

	e.g. 	What is 73 in binary?	

	The column headings are always (right to left) 1, 2, 4, 8, 16, 32, and so on. These are powers of 2

	128
	64
	32
	16
	8
	4
	2
	1

	0
	1
	0
	0
	1
	0
	0
	1

Put 1s and 0s in the right columns so that the numbers add up to 73

	Answer: 73 in decimal (denary) = 01001001 in binary

How to turn an integer from binary to decimal (denary)

	e.g. 	What is 10011100 in decimal?	

	Put the 1s and 0s under the column headings and add up the numbers where there are 1s

	128
	64
	32
	16
	8
	4
	2
	1

	1
	0
	0
	1
	1
	1
	0
	0

	Answer: 10011100 in binary = 156 in decimal

Range of values		

For example, if 8 bits are used then

the smallest number would be 	00000000	(this is 0 in decimal)
the largest number would be 	11111111	(this is 255 in decimal. 255 = 28 – 1)

So the range of possible values is 	00000000 to 11111111 (in binary)

0 to 255	or 	0 to 28 – 1 	(in decimal)

In general, with n bits, the range of values possible with n bits is 	0 to 2n-1

[bookmark: _Toc482281630]
Real numbers

A real number is a number that has a fractional part 	e.g. 67.341, 0.0005, 100.3

The number is stored using floating point representation using a mantissa and an exponent

		e.g.	6527.802 = 0.6527802 x 104

		The decimal point has “floated” to the front of the number

		The 6527802 is called the mantissa and the 4 is called the exponent
	
This is similar to the scientific notation that you might meet in mathematics or science – the point floats to a different place but it is the same idea

The mantissa and the exponent can then be stored separately. The computer recreates the original number for calculations when it needs to

[bookmark: _Toc482281631]
Characters

character – any symbol or letter found on a keyboard. Each character has a unique numerical value inside the computer e.g. ‘A’ is 01000001 (= 65).

How does the computer know whether it should be the number 65 or the letter ‘A’ ? See page 3

character set of a computer – a list of all characters a computer can process and store. Different computers have different character sets

control characters – do not print on the screen in the normal way. They control certain operations of the computer such as ‘cursor up’, cursor down’, ‘clear screen’, ‘tab’, ‘return (enter)’, ‘delete’ etc. If you look at the table below, they are characters with ASCII codes 0 to 31

(EXTENDED) ASCII
· American Standard Code for Information Interchange
· An ASCII code is stored using one byte (8 bits)
· 28 = 256 therefore ASCII can represent 256 different characters
· In ASCII, codes 0 to 31 are used for control characters e.g. 0001001 is the tab key
[image: Image result for binary ascii table]

Aside: There are other coding systems for characters. For example, Unicode is designed to represent all the characters from all of the world’s major languages. It was originally set up as a 16-bit code.
216 = 65536 different characters. Nowadays even more bits are used to give an even greater range of characters

[bookmark: _Toc482281632][image: Image result for example vector graphic]Vector graphics

Representing graphics using vector graphics	

· A vector graphic is made up of objects each having a set of attributes
· Examples of objects: rectangle, ellipse, line, polygon	
· Examples of attributes: co-ordinates (position), fill colour, line colour
· e.g. a red rectangle. The object is a ‘rectangle, its attribute of fill colour has the value red
· An example of a vector graphic package is CorelDRAW
· The file size increases as the complexity of the graphic increases. The more objects that are added, the more data that must be stored

[bookmark: _Toc482281633]Bitmapped graphics

[image: https://upload.wikimedia.org/wikipedia/commons/4/48/Bitmapfont.png]Representing graphics using bitmaps

· Pixel - short for picture element

· Black and white bitmapped graphics
· one bit per pixel (usually set to 0 for white, 1 for black)
· This means that the number of bits = number of pixels

· [image: Image result for example bitmap]Bitmap – a grid of bits (1s and 0s) is used to represent the colour of the pixels of the graphic

· Colour bitmapped graphics
· Several bits are assigned to each pixel to represent the colour of the pixel
· e.g. 10 bits per pixel means 1024 possible colours for each pixel
· True colour means 24 bits per pixel (the limit at which the human eye can distinguish between colours). This gives a total range of 16777216 colours

· Resolution of a graphic
· the number of pixels making up the graphic
· determines the quality (accuracy) of the graphic
· the smaller the pixels, the higher the resolution and the better the quality

· Screen resolution	e.g. 1024 x 768 (horizontal x vertical)

· Capture resolution	e.g. digital camera with a total resolution of 8 megapixels

Bit depth

If more than one bit is used for each pixel, then shades of grey or even colour can be represented. For example, if two bits are used for each pixel then there are four possible combinations (00, 01, 10, 11) which can be used to represent the colour of a pixel (e.g. white, light grey, dark grey, black). The greater the number of bits used for each pixel, the greater the variety of colours)

Definition: 	Bit depth (colour depth) is the number of bits used to represent colour or shades of grey in a graphic

How many bits would 128 colours require?

Ans:	128 = 27	so 7 bits required

What is the bit depth of a graphic allowing up to 1024 colours?

Ans:	1024 = 210	therefore bit depth = 10

A graphic has a bit depth of 6. How many colours does this allow?	Answer: 26 (64)

Storage requirements of a bitmapped graphic

· Changing the colours in a bit-mapped graphic does not alter the storage requirements. If the bit depth or resolution of a bit-mapped graphic changes, the file size will change

· As bit depth and resolution increases, the quality of the image will increase but the file size will too, meaning increased storage requirements and slower transmission times

Comparison of bit mapped and vector graphics

EDITING: When two shapes overlap in a bit mapped package, the shape on top will “rub out” the shape underneath whereas, with a vector graphic, individual objects can be selected and layered

EDITING at pixel level: This is possible with a bit-mapped graphic

To edit an object in a vector graphics file, the object needs to be selected and then the values of its attributes are changed e.g. colour (attribute) red (value) might be changed to colour green

FILE SIZE: The file size of a bit mapped graphic stays the same regardless of the amount of detail in the graphic because each pixel is stored regardless of its colour, whereas a vector graphic file size increases as objects are added

The description of each object making up a vector graphic is called its “set of attributes”

RESOLUTION INDEPENDENCE: This is when the resolution of the graphic on the screen does not affect the resolution of the printed graphic. This is a characteristic of vector graphics files because the processor sends the file of object attributes that represent the graphic to the printer and the printer prints the graphic off using its own resolution settings

When a bit map is printed out, the resolution of the printout is the same as the resolution of the bit map on the screen regardless of the resolution of the printer. This is because the processor sends the bit map as it is to the printer and it is printed as it is

[bookmark: _Toc482281634]Computer structure

[bookmark: _Toc482281635]Computer architecture

Inside a computer…

Memory
RAM
ROM
Processor
Registers
Data bus
ALU
Control unit
Address bus

Clock

a) The processor (sometimes called the CPU or Central Processing Unit)

	ALU – Arithmetic Logic Unit

	Carries out calculations and makes decisions using logical operations

e.g. if a program needs to add 2.73 and 5.76, these would be brought into the ALU where they would be added together

e.g. if a program needs to compare the values of variables x and y, this would be done in the ALU

	Control unit

Controls all the parts of the processor and makes sure that program instructions are synchronized to be executed in the correct order

Makes sure that all events in the processor happen in the correct place and at the correct time

	

Registers

	Registers are storage locations inside the processor chip that hold data while the processor is using it

MAR – Memory Address Register. This holds the address of the location in memory that is currently being accessed

	MDR – Memory Data Register. This holds the contents of the location currently being accessed

b) Memory

Memory is organised as a series of storage locations, each with its own unique address. The processor uses the address to place data in a specific location and to fetch data from a specific location

RAM – Random Access Memory. This is called volatile memory which means that it holds its data as long as the computer is switched on, but when the computer is switched off any data in RAM is lost. RAM can be edited by the user

Backing storage such as hard disk drives (HDD), solid state drives (SSD) and flash ROM are used to hold data whilst the computer is switched off. Flash ROM can be reprogrammed whilst inside the computer and is popular at present e.g. USB flash drives and digital camera memory cards.
		
ROM – Read Only Memory. This is called non-volatile memory which means that it holds its data permanently even when the computer is switched off. It is often used to hold the start-up operating system files. ROM is not normally editable

c) Buses

Buses are sets of wires connecting parts of the computer together
	
	
	Data bus
	Bi-directional. This bus transfers data between main memory and the processor
			
	The number of wires making up the bus determines the quantity of data the bus can carry
		
	e.g. 	if the bus has 8 wires

				then the number of possible numbers it can carry is 28

			and 	the greatest integer it can carry is 28 – 1 (assuming no negative integers)	

Address bus
			
Uni-directional. The address bus indicates which address in memory is being read from or written to

The number of wires making up the bus determines the number of storage locations the processor can access

e.g. if the bus has 32 wires then the number of possible addresses it can access is 232 and the range of addresses is from 0 to 232 - 1

Fetch-execute cycle

If a program is running, its instructions (the lines of code that have been translated into machine code) will be held in a series of storage locations in memory

The processor starts with the first instruction. It specifies the instruction’s address (where the instruction is) using the address bus

The instruction is transferred to the processor via the data bus

The processor executes the instruction and then fetches the next instruction. A program counter keeps track of which instruction the processor is on

		

[bookmark: _Toc482281636]Program instructions

High level language instructions need to be translated into machine code instructions (in binary) in order for the processor to be able to execute them. This means that, in the end, even the most complicated programs like a computer game or an operating systems are just a huge collection of 1s and 0s

Every processor has its own instruction set

Portable software: A piece of software that can run on different computer systems i.e. it can be translated into the machine code of a variety of processors e.g. for an Intel processor, for an AMD processor etc.
	
A short machine code program might look like this

		Operator	Operand	What the program means
		01001000 	00001100	Load accumulator (in the ALU) with the contents of address 12
		01110110 	00000101	Add to the accumulator the number 5
		01011001	00001100	Store the value of the accumulator in location with address 12
		
Obviously, programming in binary machine code is time-consuming and hugely error-prone. Coding in machine code is usually only done in situations where the programmer needs to refer directly to the individual parts of the processor chip or refer directly to locations in main memory

[bookmark: _Toc482281637]Translator software

High-level languages are designed to be read by humans. High level languages try to use simple, common language to form instructions for the processor to carry out. For example, LiveCode

on placeFlags
 repeat with flagNumber = 1 to 4
 set the location of image id flagData[flagNumber]["imageID"] to flagData[flagNumber]["current position"] * 100, 200
 end repeat
end placeFlags

Other examples of high level languages are C#, C++, Java, PHP, HTML, JavaScript, Perl, Ruby, Python, Scratch

However, before these instructions can be executed by the processor, they must be translated into low-level instructions. Each high-level instruction will translate into several low-level instructions

High-level language translators come in two forms:

Interpreters
The program (source code) is in memory along with the interpreter which translates and executes each line of the program in turn

Advantage: Often used during development time. It is easier to locate errors since the interpreter can highlight lines in the source code where the program fails during a test run whilst still in the editing environment

Disadvantages: The run (execution) is slower because of the simultaneous translation and because any repeated line will be re-translated. In addition, the interpreter software takes up memory

Compilers
The program (source code) is translated into machine object code that can be executed by the processor independently of the original source code. The only software that needs to be in main memory to run the program is the object code

Advantages: The run (execution) of the compiled code will be fast because the translation has been done separately. The run (execution) uses less memory because only the compiled code needs to be in memory. In addition, the original program source code is not available for people to view and possibly plagiarise

Disadvantage: All errors need to have been corrected before source code can be compiled to run independently

[bookmark: _Toc482281638]Environmental impact

A computing-related carbon footprint measures the amount of greenhouse gases emitted by computer equipment during its

· manufacture
· use
· disposal
In particular, the use of computer equipment can require large amounts of energy
· [bookmark: _GoBack]Problem: Some energy sources such as oil, gas and coal are non-renewable. This means that the use of them as energy sources is unsustainable. In the long run, the supplies will run out – and mining/drilling for such energy sources can harm the environment
· Problem: Energy production e.g. by a coal-fired power station, releases CO2 and other gases that contribute to global warming
If the user of a computer system is accessing the Internet, then the carbon footprint also involves the electricity usage (and therefore carbon emissions) of the companies that run the websites that the user views

We should try to reduce carbon emissions while we use computers by making equipment more efficient. Modern manufacturers of IT equipment are constantly looking for ways to reduce the energy consumption of devices.

Some solutions:
Use low-power computing devices e.g. low–power-consumption processors, low-energy-rated LED monitors

Make the computing device more energy efficient by
a) adjusting the monitor settings (e.g. brightness, sleep)
b) power-down settings (e.g. set the hard drive to stop spinning after a period of time, set the Minimum Processor State which allows you to choose a percentage of power to allot to the processor when it is inactive or performing minimal tasks
c) Computers can also be left on standby when not in use to cut power consumption

[bookmark: _Toc482281639]Security precautions
[bookmark: _Toc482281640]Firewalls
A firewall is a network security system designed to prevent unauthorized access to or from a private network. Firewalls can be implemented in both hardware and software, or a combination of both. Network firewalls are frequently used to prevent unauthorized Internet users from accessing private networks connected to the Internet, especially intranets. All messages entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified security criteria.
Hardware and Software Firewalls
Firewalls can be either hardware or software but the ideal configuration will consist of both. In addition to limiting access to your computer and network, a firewall is also useful for allowing remote access to a private network through secure authentication certificates and logins.
Hardware firewalls can be purchased as a stand-alone product but are also typically found in broadband routers, and should be considered an important part of your system and network set-up. Most hardware firewalls will have a minimum of four network ports to connect other computers, but for larger networks, business networking firewall solutions are available.

Software firewalls are installed on your computer (like any software) and you can customize it; allowing you some control over its function and protection features. A software firewall will protect your computer from outside attempts to control or gain access your computer.
Some firewall software is free to download off the Internet e.g. ZoneAlarm

[bookmark: _Toc482281641]Encryption

In cryptography, encryption is when data held on a computing system is put into a code. This means that if the data is hacked into, it is meaningless to the hacker unless they have the security key to unlock or decipher the encrypted data - only authorized parties who have the key can access it. Encryption does not of itself prevent interference, but denies the intelligible content to a would-be interceptor. In an encryption scheme, the intended information or message is encrypted using an encryption algorithm, generating information that can only be read if decrypted. It is theoretically possible to decrypt the message without possessing the key, but, for a well-designed encryption scheme, considerable computing power and skills would be required.
16

image2.gif
Decimal Binary Octal
0 00000000 000
1 00000001 001
2 00000010 002
3 00000011 003
4 00000100 004
5 00000101 005
& 00000110 006
7 00000111 007
8 00001000 010
o ooooto01 011
10 00001010 012
11 ooootott 013
12 00001100 014
13 00001101 015
14 00001110 016
15 000011 017
16 00010000 020
17 00010001 021
18 00010010 022
19 00010011 023
20 00010100 024
21 000no101 025
22 o010 028
25 ooonorit 027
24 00011000 030
25 00011001 031
26 oootono 032
27 ooommont 033
28 00011100 034
29 00011101 038
30 0001110 036
31 oo0t1m 037

Hex Ascll
00 NUL
o1 SoH
02 ST
03 EX
04 EOT
05 EnQ
06 ACK
o7 BEL
08 B
09 HT
oA LF
B v
oc FF
o R
0E S0
oF sl
10 DLE
1 oct
12 oc2
13 pea
14 pcs
15 NAK
6 Sm
17 e
18 can
19 e
1 sus
1B Esc
1 oFs
D G
€ RS
Fous

Decimal

B22BBA8R2BRVAISBE568882588388888

ks

Decimal - Binary - Octal - Hex — ASCII

Binay Octal

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
o0t01101
00101110
oot01111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
0111010
oo0111011
00111100
o0o0111101
00111110
00111111

$333833388888¢8¢8¢8

SREEBLELLULELBBLERRBEBRBBIBRRBINRSG

057
080
061

064
065
066
067
o070
o7t
o2
o073
o074
o075
o076
o7

Hex AsCll

Ceg e

P

”e

_—

Decimal

64
5
3
67
68
5
70
7
72
7
74
75
7
7
78
79
80
81
82
kS
84
E
£l
87
88
8
%0
o1
%2
£
o4
o

Conversion Chart

Binary Octal Hex ASCI Decimal
0100000 100 40 @ %
01000001 101 41 A o7
otomot0 102 42 B %
otomot1 103 43 C %
01000100 104 44 D 100
ot00101 105 45 E 101
01000110 106 48 F 102
ottt 107 47 G 103
01001000 110 48 H 104
ot001001 111 49 1 105
ot001010 112 4A J 108
ol001011 113 4B K 107
ot01100 114 4 L 108
o001 115 4D M 100
01001110 116 4E N 110
oot 117 4 O 1
01010000 120 50 P 12
oto0001 121 51 @ 13
olow010 122 82 R 114
o011 123 53 s 15
01010100 124 54 T 116
o100t 125 85 U 17
01010110 126 86 V. 118
owowin 127 87w 110
01011000 130 58 X 120
01011001 131 50 Y 21
oo 132 Az 22
ototon 133 88 [23
01011100 134 sC | 126
olot1101 135 8D] 125
ott0 138 s 4 125
owomn 137 s _ 27

o o St i Crtin Comons At i Licks Tovine 3 ops 15 Ko, vt g v Sy ombra33 0

Binary

01100000
01100001
01100010
ot100011
01100100
01100101
01100110
oto0111
01101000
01101001
01101010
ottot01
01101100
otto101
ot1o1110
ottonm
01110000
01110001
01110010
o1110011
01110100
ot110101
01110110
ot1011
01111000
01111001
01111010
ottton
01111100
o101
ot11110
otmin

octal

140
141
122
143
148
15
148
147
150
151
152
153
154
155
156
157
160
161
182
163
164
185
186
167
1m0
n
2
73
178
75
78
i

Hex

80
1
82
k3
64
L3
E3
&7
8
)
6
8
5
0
6
F
70

7
72
7
74
75
7
7
78
79
7
7
7c
™
7
7

&

Iw—mMm<xg<cmbosavos3z-x—-z6-baoocs -

8

A Comeien hatdoc Coprigh O30S Dovald Wi 2132012

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

