Advanced Higher Physics Rotational Motion and Astrophysics
 Study Guide

1.1 Kinematic Relationships

- 1 Derive the equations

$$
v=u+a t, \quad s=u t+\frac{1}{2} a t^{2}, \quad v^{2}=u^{2}+2 a s
$$

for linear motion with a constant acceleration from

$$
a=\frac{d v}{d t} \text { i.e. } \quad a=\frac{d^{2} s}{d t^{2}}
$$

- 2 Carry out calculations using the equations above.
- 3 State what is represented by the gradient of a displacement-time graph.
- 4 State what is represented by the gradient of a velocity-time graph
- 5 Calculate displacement from a velocity-time graph by integration between limits.

Advanced Higher Physics Rotational Motion and Astrophysics

Study Guide

1.2 Angular Motion

- 1 State and explain what is meant by angular displacement.
- 2 Use the radian as a measure of angular displacement.
- 3 Convert between degrees and radians.
- 4 Carry out calculations involving the equation $s=r \theta$.
- 5 State and explain what is meant by angular velocity.
- 6 Carry out calculations using the equation $\omega=\frac{d \theta}{d t}$.
- 7 Carry out calculations involving $\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$.
- 8 Carry out calculations involving the following equations:

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha t \\
\theta & =\omega_{0} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta \quad \text { where } \alpha \text { is a constant angular acceleration. }
$$

- 9 State and explain what is meant by tangential velocity.
- 10 Carry out calculations involving $v=r \omega$.
- 11 Carry out calculations involving $\omega=\frac{2 \pi}{T}$ where $\mathrm{T}=$ period.
- 12 State and explain what is meant by tangential acceleration.
- 13 Carry out calculations involving $a_{t}=r \alpha$.
- 14 State and explain what is meant by radial (centripetal) acceleration.
- 15 Explain the difference between tangential and radial acceleration.
- 16 Carry out calculations using $a=\frac{v^{2}}{r}=r \omega^{2}$.
- 17 Describe how a centripetal force allows an object to rotate in a circular motion.
- 18 Carry out calculations involving $F=\frac{m v^{2}}{r}=m r \omega^{2}$.

Advanced Higher Physics Rotational Motion and Astrophysics
 Study Guide

1.3 Rotational Dynamics

- 1 Explain what is meant by Torque.
- 2 Carry out calculations involving

$$
T=F r
$$

where F is the force applied at right angles to the axis of rotation.

- 3 Describe the effect of applying an unbalanced Torque.
- 4 Explain how an unbalanced Torque affects angular acceleration.
- 5 Define Moment of Inertia.
- 6 State what factors affect Moment of Inertia. $I=\sum m r^{2}$
- 7 Calculate Moment of Inertia for different shapes given the

$$
\begin{array}{lll}
\text { equations: } & \text { rod about centre } & I=\frac{1}{12} m l^{2} \\
\text { Rod about end } & I=\frac{1}{3} m l^{2} \\
\text { Disc about centre } & I=\frac{1}{2} m r^{2} \\
\text { Sphere about centre } & I=\frac{2}{5} m r^{2}
\end{array}
$$

■ 8 Carry out calculations involving $T=I \alpha$.

- 9 Explain what is meant by angular momentum.
- 10 Carry out calculations using $L=I \omega$.
- 11 Carry out calculations using $L=m v r=m r \omega^{2}$.
- 12 State and explain the Principle of Conservation of Angular Momentum.
- 13 Explain the difference between Linear and Rotational Kinetic Energy.
- 14 Carry out calculations using $E_{k(\text { rotational })}=\frac{1}{2} \mathrm{I} \omega^{2}$.
- 15 Carry out calculations using $\quad E_{p}=E_{k(\text { translational })}+E_{k(\text { rotational })}$.

