# Advanced Higher Physics Rotational Motion and Astrophysics Study Guide

#### 1.1 Kinematic Relationships

■ 1 Derive the equations

$$v = u + at$$
,  $s = ut + \frac{1}{2}at^2$ ,  $v^2 = u^2 + 2as$ 

for linear motion with a constant acceleration from

$$a = \frac{dv}{dt}$$
 i.e.  $a = \frac{d^2s}{dt^2}$ 

- □ 2 Carry out calculations using the equations above.
- □ 3 State what is represented by the gradient of a displacement-time graph.
- □ 4 State what is represented by the gradient of a velocity-time graph
- □ 5 Calculate displacement from a velocity-time graph by integration between limits.

#### **Advanced Higher Physics**

### **Rotational Motion and Astrophysics Study Guide**

#### 1.2 Angular Motion

- **1** State and explain what is meant by angular displacement.
- **2** Use the radian as a measure of angular displacement.
- □ 3 Convert between degrees and radians.
- $\Box$  4 Carry out calculations involving the equation  $s = r\theta$ .
- **5** State and explain what is meant by angular velocity.
- $\Box$  6 Carry out calculations using the equation  $\omega = \frac{d\theta}{dt}$ .
- $\Box$  7 Carry out calculations involving  $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$ .
- 8 Carry out calculations involving the following equations:

$$\omega = \omega_0 + \alpha t$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

 $\omega^2 = \omega_0^2 + 2\alpha\theta$  where  $\alpha$  is a constant angular acceleration.

- □ 9 State and explain what is meant by tangential velocity.
- $\Box$  10 Carry out calculations involving  $v = r\omega$ .
- □ 11 Carry out calculations involving  $\omega = \frac{2\pi}{T}$  where T = period.
- □ 12 State and explain what is meant by tangential acceleration.
- □ 13 Carry out calculations involving  $a_t = r\alpha$ .
- □ 14 State and explain what is meant by radial (centripetal) acceleration.
- □ 15 Explain the difference between tangential and radial acceleration.
- $\Box$  16 Carry out calculations using  $a = \frac{v^2}{r} = r\omega^2$ .
- ☐ 17 Describe how a centripetal force allows an object to rotate in a circular motion.
- □ 18 Carry out calculations involving  $F = \frac{mv^2}{r} = mr\omega^2$ .

2

## Advanced Higher Physics Rotational Motion and Astrophysics

#### **Study Guide**

#### 1.3 Rotational Dynamics

- ☐ 1 Explain what is meant by Torque.
- □ 2 Carry out calculations involving

$$T = Fr$$

where F is the force applied at right angles to the axis of rotation.

- □ 3 Describe the effect of applying an unbalanced Torque.
- □ 4 Explain how an unbalanced Torque affects angular acceleration.
- □ 5 Define *Moment of Inertia*.
- $oldsymbol{\square}$  6 State what factors affect Moment of Inertia.  $I=\sum mr^2$
- □ 7 Calculate Moment of Inertia for different shapes given the

equations: rod about centre 
$$I = \frac{1}{12}ml^2$$

Rod about end 
$$I = \frac{1}{3}ml^2$$

Disc about centre 
$$I = \frac{1}{2}mr^2$$

Sphere about centre 
$$I = \frac{2}{5}mr^2$$

- □ 9 Explain what is meant by angular momentum.
- $lue{}$  10 Carry out calculations using  $L=I\omega$  .
- □ 11 Carry out calculations using  $L = mvr = mr\omega^2$ .
- ☐ 12 State and explain the Principle of Conservation of Angular Momentum.
- ☐ 13 Explain the difference between Linear and Rotational Kinetic Energy.
- $\Box$  14 Carry out calculations using  $E_{k(rotational)} = \frac{1}{2} I\omega^2$ .
- $\Box$  15 Carry out calculations using  $E_p = E_{k(translational)} + E_{k(rotational)}$ .

3