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1.1      Kinematic Relationships 

 1  Derive the equations 

𝑣 = 𝑢 + 𝑎𝑡,       𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2,         𝑣2 = 𝑢2 + 2𝑎𝑠 

for linear motion with a constant acceleration from 

𝑎 =
𝑑𝑣

𝑑𝑡
 i.e.    𝑎 =

𝑑2𝑠

𝑑𝑡2
  

 2Carry out calculations using the equations above. 

 3  State what is represented by the gradient of a displacement-time  

 graph. 

 4  State what is represented by the gradient of a velocity-time graph 

 5 Calculate displacement from a velocity-time graph by integration  

between limits. 
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KINEMATIC RELATIONSHIPS 
 
Throughout this course calculus techniques will be used.  These techniques are very powerful and 
a  knowledge of integration and differentiation will allow a deeper understanding of the nature of 
physical phenomena. 
 
Kinematics is the study of the motion of points, making no reference to what causes the motion. 
 
The displacement, s, of a particle is the length and direction from the origin to the particle.  
 
The displacement of the particle is a function of time: s  =  f(t) 
 
Consider a particle moving along OX. 

 
 

At time t + t particle passes Q. 
 

Velocity 

   average velocity  vav  =  
s

t   

 
However the instantaneous velocity is different, this is defined as : 

   v  =  lim  
s

t     (as t -> 0)       v  =  
ds

dt   

 

Acceleration  

   velocity changes by  v in time  t 

     aav   =  
v

t   

 

Instantaneous acceleration : a  =  lim  
v

t   (as t -> 0)      a  =  
dv
dt   

    if  a  =  
dv
dt     then   

dv
dt     =   

d
dt  

.ds
dt

    =   
d2s

dt2
  

    

      a   =  
dv
dt    =   

d2s

dt2
          

 
Note: a change in velocity may result from a change in direction (e.g. uniform motion in a circle - 

see later). 

s

O P Q

 s

X

 s is covered in time     t
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Mathematical Derivation of Equations of Motion for Uniform Acceleration 

       a  =   
d2s

dt2
   

Integrate with respect to time: 

   




 

 

 
d2s

dt2
 dt    =  

 

 

 a dt    

           
ds
dt    =   a t   +   k 

  when t  =  0   
ds
dt   =  u    hence    k  =  u  

   t  =  t    
ds
dt   =  v 

    v  =  u   +   at    ..... 1   

 
 
 

integrate again :  remember that    v  =  
ds
dt     =  u + at 

    

 

 ds    =   

 

 u dt   +   

 

 a t dt  

 

          s   =  u t   +   
1

2
a t2   +    k 

 
apply initial conditions: when  t   =   0,  s   =   0   hence   k  =  0 
 

    s   =  ut   +   
1

2
 at2   ..... 2         

 
 

 

 

 

 

Equations 1 and 2 can now be combined as follows:    

square both sides of equation 1 

   v2   =   u2   +   2 u a t   +   a2 t2 

   v2   =   u2   +   2 a [ u t   +   
1
2  a t2] 

 

       (using equation 2)     v2  =  u2   +   2as   ..... 3   

 
 
A useful fourth equation  is  

      s   =   
(u + v)

2
   t   ..... 4 
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Examples of using further calculus to solve problems: 
 
The position of an object varies with time. This motion is described by the following expression: 
 

s (t) = 3.1t2 + 4.1t + 6 
 
(a) Find an expression for the velocity of the object 
 

𝑣 =
𝑑𝑠

𝑑𝑡
= 6.2𝑡 + 4.1 

 
(b) Find the velocity be after 7 seconds. 
 

𝑣 = (6.2 × 7) + 4.1 

𝑣 = (43.4) + 4.1 = 47.5𝑚𝑠−1 
 
 
(c) Find the acceleration of the object. 
 

𝑎 =
𝑑𝑣

𝑑𝑡
= 6.2 

𝑎 =
𝑑𝑣

𝑑𝑡
= 6.2𝑚𝑠−2 

 
 
 

Variable Acceleration    

If acceleration depends on time in a simple way, calculus can be used to solve the motion. This 
would look like a higher order polynomial, for example: 
 

s (t) = 3t3 +3.1t2 + 4.1t + 6 
 
Differentiating this expression twice will yield an acceleration which is still dependent on time!
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Graphs of Motion 
The slope or gradient of these graphs provides useful information.  Also the area under the graph 
can have a physical significance. 
 

 

Calculations Involving Uniform Accelerations 

Examples of uniform acceleration are: 
• vertical motion of a projectile near the Earth’s surface, where the acceleration is          

g = 9.8 m s-2 vertically downwards 
• rectilinear (i.e. straight line) motion e.g. vehicle accelerating along a road. 

These have been covered previously; however a fuller mathematical treatment for projectiles is 
appropriate at this level.  
 
Consider the simple case of an object projected with an initial velocity u at right angles to the 
Earth’s gravitational field - (locally the field lines may be considered parallel). 

object

x

u

field

lines

y
path

 

   a  =  g,   time to travel distance x across the field  =  t   and  t  =  
x
u
  

   

   apply            s  =  ut  + 
1

2
 a t2 

y  =  uyt  +  
1

2
 a t2,               uyt  =  0   and   a  =  g 

     y  =  
1

2
. g . 

x2

u2
  

     y  = [1

2
. 

g

u2
  ] . x2 

 

Now g and u are constants,     y    x2  and we have the equation of a parabola. 
 
The above proof and equations are not required for examination purposes. 
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1.2  Angular Motion 

  1 State and explain what is meant by angular displacement. 
 2 Use the radian as a measure of angular displacement. 

 3 Convert between degrees and radians. 

 4  Carry out calculations involving the equation 𝑠 = 𝑟𝜃. 

 5  State and explain what is meant by angular velocity. 

 6 Carry out calculations using the equation 𝜔 =
𝑑𝜃

𝑑𝑡
  . 

 7 Carry out calculations involving  𝛼 =
𝑑𝜔

𝑑𝑡
=

𝑑2𝜃

𝑑𝑡2
 . 

 8 Carry out calculations involving the following equations: 
                                   𝜔 = 𝜔0 + 𝛼𝑡 

        𝜃 = 𝜔0𝑡 +
1

2
𝛼𝑡2 

                      𝜔2 = 𝜔0
2 + 2𝛼𝜃          where α is a constant angular acceleration. 

 9  State and explain what is meant by tangential velocity. 

 10  Carry out calculations involving  𝑣 = 𝑟𝜔. 

 11 Carry out calculations involving  𝜔 =
2𝜋

𝑇
    where T = period. 

 12  State and explain what is meant by tangential acceleration. 
 13  Carry out calculations involving 𝑎𝑡 = 𝑟α. 
 14  State and explain what is meant by radial (centripetal)  

 acceleration. 
 15  Explain the difference between tangential and radial acceleration. 

 16  Carry out calculations using  𝑎 =
𝑣2

𝑟
= 𝑟𝜔2  . 

 17  Describe how a centripetal force allows an object to rotate in a  
 circular motion. 

 18  Carry out calculations involving  𝐹 =
𝑚𝑣2

𝑟
= 𝑚𝑟𝜔2 . 
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ANGULAR MOTION 
 
The radian is used when measuring a new quantity known as angular displacement, θ, measured 
in radians (rad). One radian represents an arc with a length of one radius of that circle. This is the 
displacement (in angle form) around the arc of a circle, which has an equivalent angle in degrees. 
 

There are 3.14159 or  radians in half a circle (180°) 

There are 6.28318 or 2 radians in a full circle (360°) 

 

 
An angular displacement is therefore linked to a linear displacement by 1 radius. 
 

s = r 

 
The angular velocity of a rotating body is defined as the rate of change of angular displacement. 

                =  
d
dt

     
   where    (rad s-1) is the angular velocity 

   (rad) is the angular displacement 

  

Angular acceleration     =  
d

dt
   =  

d2

dt2
       where        (rad s-2) is the angular acceleration  

 

We assume for this course that  is constant. 
 

 
 
The derivation of the equations for angular motion are very similar to those for linear motion seen 
earlier.   
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Angular Motion Relationships 
  

      =     +   t    ..... 1   

 

        t   +   
1

2
 t2   ..... 2   

 

    2 =  o2   +   2       

 
 
You will note that these angular equations have exactly the same form as the linear equations.   
Remember that these equations only apply for uniform angular accelerations.   

 

Uniform Motion in a Circle 

Consider a particle moving with uniform speed in a 
circular path as shown opposite. 

    =  
d
dt

  

The rotational speed v is constant,  is also constant. 
T is the period of the motion and is the time taken to 

cover 2 radians. 

    =  
2


  but v  =  

2r
T

   

   v  =  r   

   

  
(Note: s is the arc swept
  out by the particle  

  and  s = r



 

r

s

v
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Angular acceleration and linear tangential acceleration 

The angular acceleration   =  
d
dt

   and the linear tangential acceleration  at  =  
dv
dt

 , when the 

rotational speed v is changing. 

Since v = r then at any instant, then 
dv
dt

  =  r 
d
dt

    giving 

at  =  r  

where the direction of at is at a tangent to the circular path of radius r.  

 

Radial Acceleration 

 

 
 

 

 

The particle travels from A to B in time t and with speed v, thus  | u |  =  | v |  and  

v = v + (−u)  which is  v = v − u      

t = 
𝑎𝑟𝑐 𝐴𝐵

𝑣
 =  

𝑟(2𝜃)

𝑣
 

 average acceleration,  aav =  
∆𝑣

∆𝑡
 =  

2𝑣 𝑠𝑖𝑛𝜃

∆𝑡
 

               =  
2𝑣 𝑠𝑖𝑛𝜃

𝑟 2𝜃 𝑣⁄
   

         =   
𝑣2𝑠𝑖𝑛𝜃

𝑟𝜃
 

 As  tends to 0, aav tends to the instantaneous acceleration at point Q: 

 

a =  
𝑣2

𝑟
 . [lim

𝜃→0

sin 𝜃

𝜃
]  but [lim

𝜃→0

sin 𝜃

𝜃
] = 1      

when  is small and is measured in radians sin  = . 

𝑎𝑟 =  
𝑣2

𝑟
=  𝑟𝜔2          since  v = r 

The direction of this acceleration is always towards the centre of the circle. 

Note: This is not a uniform acceleration.  Radial acceleration continuously changes direction and 
its magnitude changes as the speed of rotation changes.   
 
This motion is typical of many central force type motions e.g. planetary motion, electrons ‘orbiting’ 
nuclei and electrons injected at right angles to a uniform magnetic field which will be covered later 
in the course. 
Thus any object performing circular motion at uniform speed must have a constant centre-seeking 
or central force responsible for the motion.  









Q

u

r

O



v

-u v

2
v
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2
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 v 

-u v 

v 
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F = mv2    

        r                                                         
 

F = mrw2    

                                                              
 

Central Force  

Does a rotating body really have an inward acceleration (and hence an inward force)? 
 
Argument Most people have experienced the sensation of being in a car or a bus which is turning 
a corner at high speed.  The feeling of being ‘thrown to the outside of the curve’ is very strong, 
especially if you slide along the seat.  What happens here is that the friction between yourself and 
the seat is insufficient to provide the central force needed to deviate you from the straight line 
path you were following before the turn.  In fact, instead of being thrown outwards, you are, in 
reality, continuing in a straight line (at a tangent to the curve) while the car moves inwards.  
Eventually you are moved from the straight line path by the inward (central) force provided by the 
door.  
 

 
 
 
 

Magnitude of the Force 

  F  =  m a   but   ar  =  
v2

r
       or ar = 2 r  

 

 

Thus central force,     

 

 

 

 

 since  v = r . or   

 

 
Note: Using these equations we can calculate how large the force must be to keep the object moving in a 
circle of a given radius at speed, v.  The force can be a magnetic force acting on a charge, gravitational 
forces acting on a mass or can be as simple as the tension in a string held at a central point or friction on a 
turning road. 

 

  

IF NO CENTRAL FORCE YOU 

MOVE AT A TANGENT TO THE 

CURVE 

CENTRAL 

FORCE 
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Fr ≥  mrw2  to continue in a circle      

                                                                            
 

Examples 

 
1. A Car on a Flat Track 
If the car goes too fast, the car ‘breaks away’ at a tangent. The force of friction is not enough to 
supply an adequate central force.  

friction




 
 

       

2. A Car on a Banked Track 

For tracks of similar surface properties, a car will be able to go faster on a banked track before 
going off at a tangent because there is a component of the normal reaction as well as a component 
of friction, Fr, supplying the central force.  

 

The central force is R sin  +  Fr cos  which reduces to R sin when the friction is zero.  The 

analysis on the right hand side is for the friction Fr equal to zero.  

 
 

 
 

 

R is the ‘normal reaction’ force of the track on 
the car. 

In the vertical direction there is no acceleration: 

  R cos = mg    ........ 1 

In the radial direction there is a central 
acceleration:  

 R sin = 
mv2

r
    ........ 2 

 
Divide Eq. 2 by Eq. 1: 
 

tan  =  
v2

gr
          (assumes friction is zero)  

  
Note: This equation applies to all cases of 
‘banking’ including aircraft turning in horizontal 
circles.  
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1.3  Rotational Dynamics 

 
 1  Explain what is meant by Torque. 

 2 Carry out calculations involving      

𝑇 = 𝐹𝑟 

where F is the force applied at right angles to the axis of rotation. 

 3 Describe the effect of applying an unbalanced Torque. 

 4  Explain how an unbalanced Torque affects angular acceleration. 

 5  Define Moment of Inertia. 

 6  State what factors affect Moment of Inertia.     𝐼 =  ∑ 𝑚𝑟2 

 7 Calculate Moment of Inertia for different shapes given the  

  equations:    rod about centre        𝐼 =  
1

12
𝑚𝑙2 

Rod about end           𝐼 =  
1

3
𝑚𝑙2 

Disc about centre     𝐼 =  
1

2
𝑚𝑟2 

Sphere about centre 𝐼 =  
2

5
𝑚𝑟2 

 8  Carry out calculations involving    𝑇 = 𝐼𝛼 . 

 9  Explain what is meant by angular momentum. 

 10  Carry out calculations using   𝐿 = 𝐼𝜔 . 

 11  Carry out calculations using   𝐿 = 𝑚𝑣𝑟 = 𝑚𝑟𝜔2. 

 12 State and explain the Principle of Conservation of Angular Momentum. 

 13 Explain the difference between Linear and Rotational Kinetic Energy. 

 14 Carry out calculations using   𝐸𝑘(𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙) =
1

2
Iω2  . 

 15 Carry out calculations using      𝐸𝑝  =  𝐸𝑘(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙) + 𝐸𝑘(𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙)  . 
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ROTATIONAL DYNAMICS 
 

Moment of a force 

The moment of a force is the turning effect it can produce.   

Examples of moments are:  

 using a long handled screwdriver to ‘lever off’ the lid of a paint tin,  
 

 
 

 using a claw hammer to remove a nail from a block of wood or levering off a cap from a 
bottle.   
 

The magnitude of the moment of the force (or the turning effect) is  F x d.   

 

Where F is the force and d is the perpendicular distance from the direction of the force to the 

turning point.  

The maximum turning effect is also achieved when these are at right angles. After that we would 

need to consider that it depends on: 

F x d x sin  (i.e. sin 90 = 1) 

Torque 

For cases where a force is applied and this causes rotation about an axis, the moment of the force 

can be termed the torque. 

 

F

O
r

 

Consider a force F applied tangentially to the rim of a 

disc which can rotate about an axis O through its 

centre.  The radius of the circle is r. 

The torque T associated with this force F is defined to 

be the force multiplied by the radius r. 

 T  =  F x r    unit of T:  newton metre (N m)   

 

If the force is not applied at a tangent to r then T = F x r x sin θ is used  

Torque is a vector quantity.  The direction of the torque vector is at right angles to the plane 

containing both r and F and lies along the axis of rotation.  (In the example shown in the diagram 

torque, T, points out of the page).  

A force acting on the rim of an object will cause the object to rotate; e.g. applying a push or a pull 

force to a door to open and close, providing it creates a non-zero resulting torque.  The distance 

from the axis of rotation is an important measurement when calculating torque.  An example would 

be a torque wrench which is used to rotate the wheel nuts on a car to a certain ‘tightness’ as 

specified by the manufacturer. 

An unbalanced torque will produce an angular acceleration.  In the above diagram if there are no 

other forces then the force F will cause the object to rotate.  
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Inertia 

In linear dynamics an unbalanced force produces a linear acceleration.  The magnitude of the 
linear acceleration produced by a given unbalanced force will depend on the mass of the object, 
that is on its inertia.  The word inertia can be loosely described as ‘resistance to change in motion 
of an object’.  Objects with a large mass are difficult to start moving and once moving are difficult to 
stop. 
 

Moment of Inertia 

The moment of inertia I of an object can be described as its resistance to change in its angular 
motion.  The moment of inertia I for rotational motion is analogous to the mass m for linear motion 
 
The moment of inertia I of an object depends on the mass and the distribution of the mass about 
the axis of rotation. 
 
For a mass m at a distance r from the axis of rotation the moment of inertia of this mass is given by 

the mass m multiplied by r
2
. 

 

    unit of I:  kg m
2
 

 
For example, a very light rod has two 0.8 kg masses each at a distance of 50 cm from the axis of 
rotation. 

 
 
The moment of inertia of each mass is m r2 = 0.8 x 0.52 = 0.2 kg m2  giving a total moment of 

inertia I = 0.4 kg m
2
.  Notice that we assume that all the mass is at the 50 cm distance.  The small 

moment of inertia of the light rod has been ignored. 
 
Another example is a hoop, with very light spokes connecting the hoop to an axis of rotation 
through the centre of the hoop and perpendicular to the plane of the hoop, e.g. a bicycle wheel.  
Almost all the mass of the hoop is at a distance R, where R is the radius of the hoop.   

Hence I = M R
2
  where M is the total mass of the hoop. 

 
For objects where all the mass can be considered to be at the same distance from the axis of 

rotation this equation I = m r
2
 can be used directly.  

 
However most objects do not have all their mass at a single distance from the axis of rotation and 
we must consider the distribution of the mass. 

I = mr
2
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Moment of inertia and mass distribution 

Particle of

mass mr
O

 

 
Consider a small particle of the 
disc as shown. This particle of 
mass m is at a distance r from 
the axis of rotation 0. 
 

The contribution of this mass to the moment of inertia of the whole object (in this case a disc) is 

given by the mass m multiplied by r
2
.  To obtain the moment of inertia of the disc we need to 

consider all the particles of the disc, each at their different distances.  
  
Any object can be considered to be made of n particles each of mass m.  Each particle is at a 
particular radius r from the axis of rotation.  The moment of inertia of the object is determined by 

the summation of all these n particles e.g.  (m r
2
).  Calculus methods are used to determine the 

moments of inertia of extended objects.  Moments of inertia of extended objects, about specific 
axes, will be given in the data booklet. 
 
Some examples include: 

 

 
 
It can be shown that the moment of inertia of a uniform rod of length L and total mass M through its 

centre is 
𝑀𝐿2

12
, but the moment of inertia of the same rod through its end is  

𝑀𝐿2

3
,  i.e. four times 

bigger.  This is because it is harder to make the rod rotate about an axis at the end than an axis 
through its middle because there are now more particles at a greater distance from the axis of 
rotation. 
 

Torque and Moment of Inertia 

An unbalanced torque will produce an angular acceleration.  As discussed above, the moment 
of inertia of an object is the opposition to a change in its angular motion. Thus the angular 

acceleration  produced by a given torque T will depend on the moment of inertia I of that object.  

T  =  I    
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Angular Momentum 
The angular momentum L of a particle about an axis is defined as the moment of momentum. 

O 

r
m

v

 

 

A particle of mass m rotates at  rad s
-1

 about the 
point O. 
The linear momentum p = m v. 
The moment of p = m v r  (r is perpendicular to v). 

Thus the angular momentum of this particle,  L = m v r = m r
2 
 since v = r . 

 
For a rigid object about a fixed axis the angular momentum L will be the summation of all the 

individual angular momenta.  Thus the angular momentum L of an object is given by   (m r
2 
  

This can be written as  (m r
2
) since all the individual parts of the object will have the same 

angular velocity .  Also we have I =  (m r
2
). 

 
Thus the angular momentum of a rigid body is: 
 

 L  =  I     unit of L:  kg m
2
 s

-1
. 

Notice that the angular momentum of a rigid object about a fixed axis depends on the moment of 
inertia. 
 
Angular momentum is a vector quantity.  The direction of this vector is at right angles to the plane 
containing v (since p = m v and mass is scalar) and r and lies along the axis of rotation.  For 

interest only,in the above example L is out of the page.  (Consideration of the vector nature of T 
and L will not be required for assessment purposes.)  
 

Conservation of angular momentum 

The total angular momentum before an impact will equal the total angular momentum after impact 
providing no external torques are acting. 
 
You will meet a variety of problems which involve use of the conservation of angular momentum 
during collisions for their solution.  
 
 

Rotational Kinetic Energy 

The rotational kinetic energy of a rigid object also depends on the moment of inertia.  For an object 

of moment of inertia I rotating uniformly at  rad s
-1

 the rotational kinetic energy is given by: 
 

 
 

Energy and work done 

If a torque T is applied through an angular displacement , then the work done  = T  

Doing work produces a transfer of energy, T   =  I 
2

-   I 
2

 (work done = Ek). 

2
Iω

2

1
Ek(rot)   
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Summary and Comparison of Linear and Angular Equations 

 

 Quantity   Linear Motion     Angular Motion 
 

 acceleration    a          ( a  =  r )    

 velocity    v  =  u  +  a t   (v  = r )    =  o  +   t   

 displacement  s  =  u t  +  
1
2

  a t
2
      =  ot  + 

1

2
   t

2
 

 momentum   p  =  m v        L  =  I    

 kinetic energy       
1

2
 m v

2
         

1

2 
I 

2
 

 Newton’s 2nd law   F  =  m
dv
dt

  =  m a    T  =  I 
dw
dt

   =  I  

 Work Done    F s        T  

 

Laws 

Conservation of  mAuA + mBuB = mAvA + mBvB  IAA + IBB = IAA + IBB 

momentum 

Conservation of  F s  =  
1 

2
m v2  -  

1

2
 m u2     T   =  

1 

2
I 2  -  

1

2 
I o

2 

energy 
  
 

Some Moments of Inertia (for reference) 

Thin disc about an axis through its centre   I  =  
1

2
M R

2 R = radius of disc 

and perpendicular to the disc.      

 

Thin rod about its centre I  =  
1

12
ML

2
 L = length of rod 

 

Thin hoop about its centre I  =  M R
2
 R = radius of hoop 

 

Sphere about its centre I  =  
2

5
M R

2
 R = radius of sphere 

 
 
Where M is the total mass of the object in each case. 
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Objects Rolling down an Inclined Plane 

When an object such as a sphere or cylinder is allowed to run down a slope, the Ep at the top,        

(m g h), will be converted to both linear  (
1

2
 m v2) and rotational (

1

2
 I 2)  kinetic energy.

 

h



length of slope = L

      h = L sin 

v



 
An equation for the energy of the motion (assume no slipping) is given below. 

m g h  =  
1

2
  I 2  +  

1

2
  m v2 

The above formula can be used in an experimental determination of the moment of inertia of a 

circular object. 

Example 

A solid cylinder is allowed to roll from rest down a shallow slope of length 2.0 m. When the height 
of the slope is 0.02 m, the time taken to roll down the slope is 7.8 s. 
The mass of the cylinder is 10 kg and its radius is 0.10 m. 
  
Using this information about the motion of the cylinder and the equation above, calculate the 
moment of inertia of the cylinder. 

Solution 

 change in gravitational Ep  =  change in linear Ek  +  change in rotational Ek 

    m g h          =       (
1

2
 m v2 - 0)       +         (

1

2
 I 2 - 0)   

 
Find Ep         EP  =  m g h  =  10 x 9.8 x 0.02  =  1.96 J 

  

Find v and ω  s  =  
(u + v)

2
   t 

         2.0  =  
(0 + v)

2
  x 7.8 

    v  =   
4.0
7.8

   =  0.513 m s-1            and            =  
v
r
   =  

0.513
0.10

   =  5.13 rad s-1 

 

    

   and                     Ek(lin)  =  
1

2
 m v2  =  

1

2
 x 10 (0.513)2  =  1.32 J 

 
 
           Ek(rot)  =    EP   -  Ek(lin)   

       
1

2
 I 2  =  1.96  -  1.32  =  0.64 J 

           I  =  
2 x 0.64

2    =  
2 x 0.64

(5.13)2
  

      I  =  0.049 kg m2 
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The Flywheel 

Example 

The flywheel shown below comprises a solid cylinder mounted through its centre and free to rotate 
in the vertical plane. 

2.0 m

ground

FT

W
2 m

 

 
       
 Flywheel: mass   =  25 kg 
   radius  =  0.30 m. 
 
 Mass of hanging weight  =  2.5 kg 

The hanging weight is released.  This results in an angular acceleration of the flywheel. Assume 
that the effects of friction are negligible.   
(a) Calculate the angular acceleration of the flywheel. 
(b) Calculate the angular velocity of the flywheel just as the weight reaches ground level. 
 
Solution 
(a) We need to know I, the moment of inertia of the flywheel:  

I  =  
1

2
 M R2 =  

1

2
 x 25 x (0.30)2  =  1.125 kg m2 

consider the forces acting on the flywheel:  
 
                      weight  - tension = unbalanced force 

       W  -  FT  =  m a        where  m  =  2.5 kg 

        24.5  -  FT  =  2.5 x 0.30   a  =  r

      FT = 

          

        Torque, T  =  FT x r  =  (24.5  -  0.75 ) x 0.30 
 

and       T =  I = 

 thus    =



     =   
7.35
1.35

   =  5.44 rad s- 

 

(b) To calculate the angular velocity we will need to know , the angular displacement for a 
length of rope 2.0 m long being unwound. 

    

          no. of revs  =  
length unwound
circumference

   =  
2.0 m

2 x 0.30 m
         where, circumference =  2  r 

  =  2  x no. of revs  =  2  x 
2.0

2  x 0.30
   =  6.67 rad                   

    

 o  =  0   apply   =  o
  +  2 

   =  ?      =  0  +  2 x 5.44 x 6.67 

   =  5.44 rad s-2     =  72.57 

   =  6.67 rad        =   8.52 rad s-1 
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Frictional Torque 

Example 

The friction acting at the axle of a bicycle wheel can be investigated as follows. 
The wheel, of mass 1.2 kg and radius 0.50 m, is mounted so that it is free to rotate in the vertical 
plane.  A driving torque is applied and when the wheel is rotating at 5.0 revs per second the driving 
torque is removed.  The wheel then takes 2.0 minutes to stop. 
 
(a)  Assuming that all the spokes of the wheel are very light and the radius of the wheel is 0.50 m, 

calculate the moment of inertia of the wheel. 
(b)  Calculate the frictional torque which causes the wheel to come to rest. 
(c)  The effective radius of the axle is 1.5 cm.  Calculate the force of friction acting at the axle. 
(d)  Calculate the kinetic energy lost by the wheel. Where has this energy gone? 

Solution 

(a) In this case        I for wheel  =  MR2  
         I  =  1.2 x (0.50) 2  (M  =  1.2 kg,   R  =  0.50 m ) 
         I  =  0.30 kg m2 

 
 

(b) To find frictional torque we need the angular acceleration (becauseT 

  t  =  120 s 
 - o

t
 

  o  =  5.0 r.p.s.       =  
0 - 31.4

120
  

        = 31.4 rad s-1    =  - 0.262 rad s-2 

 

    Now use  T   =  I 

      =x (-0.262) 
      T   =  - 0.0786 N m 
 

i.e. this is a frictional force and so a negative value is sensible! 
 
 
(c) Also    T   =  r F  (r  =  1.5 cm  =  0.015 m) 

      F  =  
T
r
   =  - 

0.0786
0.015

   =  - 5.24 N 

 
  i.e. negative value indicates force opposing  motion.  
 

(d)     Ek(rot)  =  
1

2
 I o

2 

                 =  
1

2
 x 0.30 x (31.4)2 

         =  148 J     
 

When the wheel stops  Ek(rot)  =  0.  This 148 J will have changed to heat in the axle due to 

the work done by the force of friction. 
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Conservation of Angular Momentum 

Example 

A turntable, which is rotating on frictionless bearings, rotates at an angular speed of 15 revolutions 
per minute.  A mass of 60 g is dropped from rest just above the disc at a distance of 0.12 m from 
the axis of rotation through its centre. 
 

60 g mass

15 rev/min

axis of rotation

0.12 m

 
As a result of this impact, it is observed that the rate of rotation of the disc is reduced to 10 
revolutions per minute. 
 
(a) Use this information and the principle of conservation of angular momentum to calculate the 

moment of inertia of the disc. 
(b) Show by calculation whether this is an elastic or inelastic collision. 
 

Solution 

(a) moment of inertia of disc      =  I 

 moment of inertia of 60 g mass  =  m r2         (treat as ‘particle’ at radius r) 

            =  0.06 x (0.12) 2 

                  Imass  =  8.64 x 10-4 kg m2 

   initial angular velocity  =  o    =  15 rev min-1  =  
15 x 2

60
  =  1.57 rad s-1 

     final angular velocity    =     =  10 rev min-1  =  1.05 rad s-1 

 
total angular momentum before impact  =  total angular momentum after impact 

                             I o  =  (I + Imass) 

    I x 1.57  =  (I + 8.64 x 10-4) x 1.05 

                      0.52 I  =  9.072 x 10-4 

                               I  =  
9.072 ×10−4

0.52
=  1.74 x 10-3 kg m2 

 

(b) Ek before impact  =  
1

2
 I o

2  =  
1

2
 x 1.74 x 10-3 x (1.57) 2  =  2.14 x 10-3 J 

Ek after impact  = 
1

2
 (I + Imass)2  =  

1

2
 x 2.60 x 10-3 x (1.05) 2  =  1.43 x 10-3 J 

 

    Ek difference  =  7.1 x 10-4 J 

 

Thus the collision is inelastic.  The energy difference will be changed to heat. 
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