X069/13/01

NATIONAL
QUALIFICATIONS 2012

MONDAY, 28 MAY
$1.00 \mathrm{PM}-3.30 \mathrm{PM}$

PHYSICS
ADVANCED HIGHER

Reference may be made to the Physics Data Booklet.
Answer all questions.
Any necessary data may be found in the Data Sheet on Page two.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

Square-ruled paper (if used) should be placed inside the front cover of the answer book for return to the Scottish Qualifications Authority.

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Universal constant of gravitation Speed of light in vacuum Speed of sound in air	${ }^{g}$ $R_{\text {E }}$ M_{E} M_{M} R_{M} G c v	$\begin{aligned} & 9 \cdot 8 \mathrm{~m} \mathrm{~s}^{-2} \\ & 6 \cdot 4 \times 10^{6} \mathrm{~m} \\ & 6 \cdot 0 \times 10^{24} \mathrm{~kg} \\ & 7 \cdot 3 \times 10^{22} \mathrm{~kg} \\ & 1 \cdot 7 \times 10^{6} \mathrm{~m} \\ & 3 \cdot 84 \times 10^{8} \mathrm{~m} \\ & 6 \cdot 67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \\ & 3 \cdot 0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3 \cdot 4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space	$\begin{aligned} & m_{\mathrm{p}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{a} \\ & h \\ & \varepsilon_{0} \\ & \mu_{0} \end{aligned}$	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	$\left.\begin{array}{r} 9550 \\ 10590 \end{array}\right\}$	Infrared
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	$\begin{gathered} \text { Melting Point/ } \\ \mathrm{K} \end{gathered}$	Boiling Point/K	Specific Heat Capacity/ $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ $\mathrm{J} \mathrm{kg}^{-1}$	Specific Latent Heat of Vaporisation/ $\mathrm{J} \mathrm{kg}^{-1}$
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	$2 \cdot 60 \times 10^{3}$	1400		6.70×10^{2}		
Ice	$9 \cdot 20 \times 10^{2}$	273		$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	$1 \cdot 00 \times 10^{3}$	273	373	$4 \cdot 19 \times 10^{3}$	3.34×10^{5}	2.26×10^{6}
Air	1.29					
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	$1 \cdot 25$	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	$1 \cdot 43$	55	90	9.18×10^{2}		2.40×10^{4}

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. (a) A beta particle travelling at high speed has a relativistic mass 1.8 times its rest mass.
(i) Calculate the speed of the beta particle. 2
(ii) Calculate the relativistic energy of the beta particle at this speed. 2
(iii) Name the force associated with beta decay.
(b) Electrons exhibit both wave-like and particle-like behaviour.
(i) Give one example of experimental evidence which suggests an electron exhibits wave-like behaviour.
(ii) Give one example of experimental evidence which suggests an electron
exhibits particle-like behaviour.
2. (a) The acceleration of a particle moving in a straight line is given by

$$
a=\frac{d v}{d t}
$$

where the symbols have their usual meaning.
(i) Show, by integration, that when a is constant

$$
v=u+a t .
$$

(ii) Show that when a is constant

$$
\begin{equation*}
v^{2}=u^{2}+2 a s \tag{1}
\end{equation*}
$$

(b) The path taken by a short track speed skater is shown in Figure 2A. The path consists of two straights each of length 29.8 m and two semicircles each of radius 8.20 m .

Figure 2A

Starting at point \mathbf{X}, half way along the straight, the skater accelerates uniformly from rest. She reaches a speed of $9.64 \mathrm{~m} \mathrm{~s}^{-1}$ at point \mathbf{Y}, the end of the straight.
(i) Calculate the acceleration of the skater.
(ii) The skater exits the curve at point \mathbf{Z} with a speed of $10.9 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the average angular acceleration of the skater between \mathbf{Y} and \mathbf{Z}.
2. (continued)
(c) When this speedskater reaches a curve she leans inwards and digs the blade of the skate into the ice as shown in Figure 2B. Force F indicates the reaction of the ice on the skater.

Figure 2B
(i) Explain how force F allows her to maintain a curved path.
(ii) The skater approaches the next curve at a greater speed and slides off the track. Explain, in terms of forces, why this happens.
3. To test a springboard a diver takes up a position at the end of the board and sets up an oscillation as shown in Figure 3A. The oscillation approximates to simple harmonic motion. The board oscillates with a frequency of 0.76 Hz . The end of the board moves through a vertical distance of 0.36 m .

Figure 3A
(a) (i) Write an expression for the vertical displacement y of the end of the board as a function of time t. Include appropriate numerical values.
(ii) The diver increases the amplitude of the oscillation. The frequency remains constant. Show that the amplitude when the diver just loses contact with the board is 0.43 m .
(b) A sport scientist analyses a dive. At one point during the dive, shown in Figure 3B, he approximates the diver's body to be two rods of equal mass rotating about point G. One rod has a length of 0.94 m the other of 0.90 m . The diver has a mass of 66.0 kg

Figure 3B
(i) Calculate the approximate moment of inertia of the diver.
(ii) The diver's true moment of inertia about point G is found to be $10.25 \mathrm{~kg} \mathrm{~m}^{2}$. Account for any difference between the value calculated in part (i) and the true value.
(iii) In the position shown in Figure 3B, the diver has an initial angular velocity of $0.55 \mathrm{rads}^{-1}$. He changes his position to that shown in Figure 3C. The diver now has a moment of inertia of $7 \cdot 65 \mathrm{~kg} \mathrm{~m}^{2}$. Calculate the angular velocity of the diver in this new position.

Figure 3C
(c) (i) Calculate the change in rotational kinetic energy between these two positions.
(ii) Account for the difference in rotational kinetic energy.
4. (a) Show that the gravitational field strength at the surface of Pluto, mass M_{p}, is given by

$$
g=\frac{G M_{p}}{r^{2}}
$$

where the symbols have their usual meanings.
(b) Figure 4A shows how the gravitational potential varies with distance from the centre of Pluto.

Distance from the centre of Pluto $/ 10^{6} \mathrm{~m}$

(i) The mass of Pluto is $1.27 \times 10^{22} \mathrm{~kg}$. Calculate the gravitational field strength at the surface of Pluto.
(ii) A meteorite hits the surface of Pluto and ejects a lump of ice of mass 112 kg . The ice is captured in an orbit $1.80 \times 10^{6} \mathrm{~m}$ from the centre of Pluto. Calculate the gravitational potential energy of the ice at this height.
(c) In 2015 the New Horizons space probe is due to arrive at Pluto. The space probe will move between Pluto and its moon, Charon, as shown in Figure 4B. Pluto has a mass seven times that of Charon and their average separation is $1.96 \times 10^{7} \mathrm{~m}$.

Not to scale
Figure 4B
Calculate the distance x from the centre of Pluto where the resultant gravitational force acting on the probe is zero. Ignore any orbital motion of the two objects.
5. (a) An uncharged conducting sphere is suspended from a fixed point X by an insulating thread of negligible mass as shown in Figure 5A. A charged plate is then placed close to the sphere as shown in Figure 5B.

Figure 5A

Figure 5B

Explain why the uncharged sphere is attracted to the charged plate. You may use a diagram to help explain your answer.
(b) The sphere is now given a negative charge of 140 nC and placed between a pair of parallel plates with a separation of 42 mm as shown in Figure 5C.

Figure 5C

When a potential difference is applied to the plates the sphere is deflected through an angle θ as shown in Figure 5D.

Figure 5D
(i) Calculate the electric field strength between the plates.
(ii) Calculate the electrostatic force acting on the sphere due to the electric field.
(iii) The mass of the sphere is $4.0 \times 10^{-3} \mathrm{~kg}$.

Calculate the magnitude and direction of the tension T in the supporting thread.
(c) The plates are now moved a short distance to the right without touching the sphere. The distance between the plates is unchanged.
Does the angle θ increase, decrease or stay the same? Justify your answer.
6. A positively charged particle travelling at $2 \cdot 29 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ enters a magnetic field of uniform magnetic induction 2.50 T as shown in Figure 6A.

Figure 6A

The direction of the magnetic field is out of the page. The particle follows a semicircular path before exiting the field.
(a) (i) State whether the particle will exit the field at point P or point Q .
(ii) Show that the charge to mass ratio of the particle is given by

$$
\frac{q}{m}=\frac{v}{r B}
$$

where the symbols have their usual meaning.
(iii) The radius of the path taken by the particle is 19.0 mm .

Use information from the data sheet to identify the charged particle. You must justify your answer by calculation.
(iv) Calculate the time between the particle entering and leaving the magnetic field.
(v) An identical particle travelling at twice the speed of the original particle enters the field at the same point.
How does the time spent in the magnetic field by this particle compare with the original? Justify your answer.
6. (continued)
(b) An unknown particle also travelling at $2.29 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ enters the field as shown in Figure 6B. The path taken by this particle is shown.

Figure 6B
What can you conclude about:
(i) the charge of the unknown particle;
(ii) the charge to mass ratio of the unknown particle?
7. Precision inductors can be produced using laser technology.

A thin film of copper is deposited on a ceramic core. A carbon dioxide laser is then used to cut the copper to form a coil as shown in Figure 7A.

Figure 7A
(a) Each photon from the laser has a momentum of $6.26 \times 10^{-29} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the wavelength of each photon.
(ii) The inductor has an inductance of $0 \cdot 1 \mathrm{H}$.

Explain what is meant by an inductance of $0 \cdot 1 \mathrm{H}$.
(b) The rate of change of current for a different inductor is investigated using a datalogger as shown in Figure 7B. This inductor has inductance L and a resistance of 2Ω.

Figure 7B

The graph shown in Figure 7C shows how the rate of change of current $d I / d t$ in the circuit varies with time from the instant switch S is closed.
7. (b) (continued)

Figure 7C
(i) Describe what happens to the magnetic field strength associated with the inductor between 0 and 1.6 s .
(ii) Use information from the graph to determine the inductance L.
(iii) Sketch a graph to show how the voltage across the 8Ω resistor varies during this time. Numerical values are required on both axes.
(iv) Calculate the maximum energy stored by the inductor in this circuit.
(c) A student sets up the circuit shown in Figure 7D to investigate the relationship between current and frequency for a capacitor and for an inductor.

Signal generator

Figure 7D
At frequency of 75 Hz the readings on A_{1} and A_{2} are the same.
Explain what happens to the readings on each ammeter as the frequency is increased from 75 Hz to 150 Hz .

Assume that the supply voltage remains constant.
8. A long thin horizontal conductor AB carrying a current of 25 A is supported by two fine threads of negligible mass. The tension in each supporting thread is T as shown in Figure 8A.

Figure 8A
(a) Calculate the magnetic induction at a point $\mathrm{P}, 6.0 \mathrm{~mm}$ directly below conductor AB .
(b) A second conductor CD carrying current I is now fixed in a position a distance r directly below AB as shown in Figure 8B. CD is unable to move.

Figure 8B
(i) Explain why there is a force of repulsion between conductors AB and CD.
(ii) Show that the force per unit length acting on each conductor can be written as

$$
\frac{F}{l}=\frac{5 \cdot 0 \times 10^{-6} I}{r}
$$

(iii) The mass per unit length of the conductor AB is $5.70 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$.

When the conductors are separated by 6.0 mm , the current I in conductor CD is gradually increased. Calculate the value of I which reduces the tension in the supporting threads to zero. rese
9. A travelling wave moves from left to right at a speed of $1.25 \mathrm{~m} \mathrm{~s}^{-1}$.

Figure 9A represents this wave at a time $t . \mathrm{P}$ and Q are partcles on the wave.

Figure 9A
(a) (i) Determine the wavelength of the wave. 1
(ii) State the amplitude of the wave. 1
(iii) Calculate the frequency of the wave. 1
(iv) What is the phase difference, in radians, between particles P and Q ? 2
(b) Write an equation for this travelling wave in terms of y, x and t.

Numerical values are required.
(c) State the equation for a wave of half the amplitude travelling in the opposite direction.
10. Figure 10 shows a model helicopter flying in a straight horizontal path from student A to student B.
student A

Figure 10
The helicopter has a siren that emits sound of frequency 595 Hz .
(a) For the first two seconds the displacement of the helicopter relative to student A is described by the equation

$$
s=4 \cdot 1 t^{2} .
$$

(i) Calculate the velocity of the helicopter when $t=2.0 \mathrm{~s}$.
(ii) Suggest what happens to the frequency of the sound heard by student B as the helicopter accelerates towards her.
Justify your answer.
(b) After $2 \cdot 0 \mathrm{~s}$ the helicopter continues towards student B with a constant velocity. Calculate the frequency of the sound heard by student B.
11. A student uses laser light of wavelength of 529 nm to determine the separation of the slits in a Young's double slit arrangement as shown in Figure 11A.

Figure 11A

A pattern of bright green dots is observed on the screen. The distance between the central maximum and the next bright dot is Δx as shown in Figure 11B.

Figure 11B

The distance Δx is measured with a metre stick. The distance D is measured with a tape measure.

The screen is moved and Δx and D are measured for six positions of the screen. Each pair of measurements is repeated five times.
The student uses the results to plot the graph shown in Figure 11C.
11. (continued)

Figure 11C
(a) (i) Using the gradient of the graph, calculate the separation of the double slits.
(ii) Suggest a reason why no error bars are shown for the slit to screen distance, D.
(iii) Other than repeating the measurements, suggest two improvements to the student's experimental technique.
(b) The experiment is repeated using a very bright LED in place of the laser. The LED emits light in the wavelength range 535 to 555 nm .
Other than a slight colour change, state two differences in the pattern observed on the screen compared to the pattern shown in Figure 11B.
[BLANK PAGE]
[BLANK PAGE]
[BLANK PAGE]

