2.3 Simple harmonic motion

Describe examples of simple harmonic motion (SHM).
--

- 2 State that in SHM the unbalanced force is proportional to the displacement of the body and acts in the opposite direction.
- \Box 3 State and explain the equation $\frac{d^2y}{dt^2} = -\omega^2y$ for SHM.
- Show that $y = A \cos \omega t$ and $y = A \sin \omega t$ are solutions of the equation for SHM.
- Show that $v = \pm \omega \sqrt{(A^2 y^2)}$ for the relationships in 4.
- State and explain what factors affect the period of oscillation for an object which moves with SHM.
- Derive the expressions $\frac{1}{2}m\omega^2(A^2-y^2)$ and $\frac{1}{2}m\omega^2y^2$ for the kinetic and potential energies of a particle executing SHM.
- State that damping on an oscillatory system causes the amplitude of oscillation to decay.

2.4 Waves

1	State that in wave motion energy is transferred with no net mass transport.
2	Energy transferred by a wave is directly proportional to the square of the amplitude. Carry out calculations involving the relationship E=kA ²
3	State the sine or cosine variation is the simplest form of a wave.
4	State that all waveforms can be described by the superposition of sine or cosine waves.
5	Carry out calculations using the relationship $y = A \sin 2\pi (ft - \frac{x}{\lambda})$ for a travelling wave.
6	Explain what is meant by phase difference.
7	Explain what is meant by phase angle and carryout calculations using the relationship $\phi = 2\pi x/\lambda$
8	Explain the superposition of waves and stationary waves.
9	Define the terms Node and Antinode.

2.5 Interference

1	State what is meant by the principle of interference by division of amplitude.
2	State in simple terms the condition for two light beams to be coherent.
3	State the reasons why the conditions for coherence are usually more difficult to satisfy for light than for sound and microwaves.
4	Define the term 'optical path difference' and relate it to phase difference.
5	Carry out calculations involving optical path difference (opd), geometrical path difference (gpd) and refractive index. $opd = n \ (gpd)$
6	State what is meant by the principle of interference by division of amplitude.
7	Describe how the division of amplitude enables an extended source to be used.
8	State that there is a phase change of π on reflection at an interface where there is an increase in optical density and that there is no change in phase on reflection at an interface where there is a decrease in optical density.
9	State the expressions for maxima and minima in the fringes formed by reflection and transmission of normally incident monochromatic light or microwaves in a 'thin film'.
10	Carry out calculations involving 'thin films' using $opd = m\lambda \ or \ (m + \frac{1}{2})\lambda$

11	Derive the expression $\Delta x = \lambda l/2d$ for distance between the fringes, formed by reflection of light at normal incidence from a 'thin wedge'.
12	Carry out calculations involving fringes formed at a 'thin wedge'.
13	Explain how lenses are made non-reflecting for a specific wavelength of light.
14	Derive the expression $d = \lambda/4n$ for the thickness of a non-reflecting coating.
15	Carry out calculations involving non-reflective coatings.
16	Explain why coated (bloomed) lenses have a coloured hue when viewed in reflected light.
17	Explain the formation of coloured fringes in a thin film illuminated by white light.
18	State what is meant by the principle of interference by division of a wavefront.
19	Explain why the principle of division of a wavefront requires the use of a 'point' or 'line' source.
20	Derive the expression $\Delta x = \lambda D/d$ for the fringe spacing in the Young's slit experiment for $\Delta x \ll D$.
21	Carry out calculations using the above expression.

2.6 Polarisation

1	Explain the difference between polarised and unpolaried light
2	State that only transverse waves can be polarized.
3	State that light can be linearly polarized using a polaroid filter.
4	Investigate polarisation of microwaves and light.
5	Explain how a combination of polariser and analyser can prevent the transmission of light.
6	Explain what is meant by Brewsters angle, ip.
7	Derive the expression $n=\tan i_p$.
8	Carry out calculations using the relationship n= tan i _p .