

1.1 Waves

At the end of the section you should be able to:		
	1	State that a wave transfers energy.
	2	State the difference between a transverse and longitudinal wave and give examples of each.
	3	Use the following terms correctly in context: frequency, wavelength, speed, amplitude.
	4	Carry out calculations involving the relationship between speed, wavelength and frequency for waves.
	5	Carry out calculations involving the relationship between distance, time and speed in waves.

1.2 Sound

At the	At the end of the section you should be able to:		
	1	State that sound can pass through solids, liquids and gases.	
	2	State that sound cannot pass through a vacuum.	
	3	Give an example which shows that the speed of sound in air is less than the speed of light in air.	
	4	Describe a method for measuring the speed of sound in air using the relationship between distance, time and speed.	
	5	State that the speed of sound changes as it moves from one material to another.	
	6	Carry out calculations involving the speed of sound.	
	7	State that the higher the pitch of a sound the larger the frequency.	
	8	State that the louder the volume of a sound the greater the amplitude.	
	9	Identify from oscilloscope traces the signal which would produce: (a) the louder sound(b) the higher frequency.	
	10	State that if two sounds are one octave apart, the frequency of one is double the other.	
	11	State that the frequency produced by a vibrating string can be increased by shortening the length of the string and increasing the tightness of the string.	
	12	State that the frequency produced by a vibrating air column can be increased by shortening the length of the air column.	
	13	State that the normal range of human hearing is from 20 hertz to 20,000 hertz.	

14	State that high frequency sounds beyond the range of human hearing are called ultrasounds.
15	Give one example of a use of ultrasound in medicine.
16	Give one example of a non-medical use of ultrasound.
17	State that sound levels are measured in decibels.
18	Give two examples of noise pollution.
19	State that excessive noise can damage hearing.
20	State that hearing can be protected by ear protectors.
21	State that some ear protectors rely upon noise cancellation.
22	State that the output signal from an amplifier has the same frequency but a bigger amplitude than the input signal.
23	State the function of each of the three major components needed to amplify speech (microphone, amplifier, loudspeaker).
24	Explain why your recorded voice sounds different to you.

1.3 Electromagnetic Spectrum

At the end of the section you should be able to:

1	State in order of frequency, the members of the electromagnetic spectrum: TV and radio, microwaves, infrared, visible light, ultraviolet, X-rays, gamma rays.
2	All waves of the electromagnetic spectrum travel 300 000 000 metres per second (the speed of light).
3	State that light can be reflected.
4	State that all visible objects give out, or reflect, light to the eye.
5	Use correctly in context the terms: angle of incidence, angle of reflection and normal when a ray of light is reflected from a plane mirror.
6	Describe one practical use of optical fibres.
7	State what is meant by the refraction of light.
8	Draw diagrams to show the change in direction as light passes from air to glass and glass to air.
9	Describe the shapes of converging and diverging lenses.
10	Describe the effect of a converging and a diverging lens on parallel rays of light.
11	Describe, in words or using a diagram, the eye defects called long and short sight.
12	State that a converging lens can correct long sight and a diverging lens can correct short sight.
13	State that a laser is a concentrated source of light of only one colour.
14	Describe how a laser is used in one practical application.

15	State that all other forms of radiation in the spectrum are invisible to the naked eye.
16	State that infrared radiation is called heat radiation.
17	Describe one use of infrared radiation in medicine.
18	Describe one non-medical use of infrared radiation.
19	Describe one use of ultraviolet radiation in medicine.
20	States that some chemicals glow ie fluoresce when they absorb ultraviolet radiation.
21	Describe how ultraviolet radiation can be used in identifying security markings.
22	State that photographic film may be used to detect X-rays.
23	Describe one use of X-rays in medicine.
24	Describe one use of X-rays in industry.
25	State that X-rays are dangerous since they can damage living cells.
26	State that gamma radiation can kill living cells or change the nature of living cells.
27	State that gamma radiation can pass through most materials.
28	Describe how gamma radiation can be used as a tracer in both medicine and industry.
29	State that the strength of a source of gamma radiation decreases with time.
30	Describe the hazards associated with the radiations of the spectrum
31	Describe the safety precautions which need to be taken when dealing with the radiations of the spectrum.

1.4 Nuclear Radiation

At the end of the section you should be able to:

1	Describe a simple model of the atom which includes protons, neutrons and electrons.
2	State that there is radiation present in our surroundings known as background radiaition.
3	Identify natural sources of background radiation.
4	Identify artificial sources of background radiation.
5	State that radiation can kill living cells or change the nature of living cells.
6	Describe medical uses of radiation based on the fact that radiation can destroy cells.
7	Describe uses of radiation based on the fact that radiation is easy to detect.
8	State that electricity can be generated from nuclear fuel.
9	State the advantages and disadvantages of using nuclear power for the generation of electricity.

