Unit 2 : PARTICLES & WAVES Wave Particle Duality

Photoelectric Emission

- 1. Green light has a wavelength of 546 nm.
 - (a) Express this wavelength in metres (using scientific notation).
 - (b) Calculate:
 - (i) the frequency of these light waves
 - (ii) the period of these light waves.
- 2. Ultraviolet radiation has a frequency of 2.0×10^{15} Hz.
 - (a) Calculate the wavelength of this radiation.
 - (b) Calculate the period of this radiation.
- 3. Radiation of frequency 5.0×10^{14} Hz can eject electrons from a metal surface.

An ultraviolet lamp of frequency 5.4×10^{14} Hz then shines onto the cap of the electroscope.

- (a) Describe and explain what happens to the gold leaf.
- (b) Explain the effect each of the following changes has on the gold leaf of the negatively charged electroscope:
 - (i) using a more intense ultraviolet lamp
 - (ii) moving the ultra violet lamp further away from the cap
 - (iii) shining red light onto the electroscope cap instead of u.v. radiation
 - (iv) using a tin plate instead of the zinc plate and illuminated with u.v. radiation
 - (v) charging the electroscope positively instead of negatively.
- 4. How much energy is possessed by a photon of frequency:
 - (a) 4.28 x 10¹⁴ Hz
- (b) 7.50 x 10¹⁴ Hz
- (c) $5.00 \times 10^{14} Hz$?
- 5. How much energy is possessed by a photon of wavelength:
 - (a) 700 nm

- (b) 400 nm
- (c) 60.0 nm?
- 6. What is the frequency of a photon with energy:
 - (a) $5.30 \times 10^{-20} \text{ J}$
- (b) $2.80 \times 10^{-19} \text{ J}$
- (c) $9.65 \times 10^{-19} J$?
- 7. What is the wavelength of a photon with energy:
 - (a) 1.66 x 10⁻¹⁹ J
- (b) 3.62 x 10⁻¹⁹ J
- (c) $7.96 \times 10^{-19} J$?
- 8. Which, if any, of the photons in question 7 are photons of visible light?

Unit 2: PARTICLES & WAVES

Wave Particle Duality

 The apparatus shown is used to investigate photoelectric emission from a metal plate when electromagnetic radiation is shone on the plate.
 The irradiance and frequency of the incident radiation can be varied as required.

- (a) Explain what is meant by 'photoelectric emission' from a metal.
- (b) What is the name given to the minimum frequency of the radiation that produces a current in the circuit?
- (c) A particular source of radiation produces a current in the circuit. Explain why the current in the circuit increases as the irradiance of the incident radiation increases.

Work Function

10. In a study of photoelectric currents, the graph shown was obtained.

- (a) What name is given to the frequency f_0 ?
- (b) Explain why no current is detected if the frequency of the incident radiation is below fo.
- 11. The work function of a particular metal is 2.65×10^{-18} J. What is the lowest frequency of light which could cause photoelectric emission?
- 12. The threshold frequency for a metal is 1.25×10^{16} Hz. What is the work function? How much kinetic energy would each photoelectron have if light of frequency 1.25×10^{16} Hz is incident on this metal?
- 13. The minimum energy required to remove an electron from zinc is 6.1×10^{-19} J.
 - (a) What name is given to this minimum energy?
 - (b) Calculate the value of fo for zinc.
 - (c) Photons with a frequency of 1.2×10^{15} Hz strike a zinc plate ejecting an electron from the surface.
 - (i) How much extra energy will the electron have after it is released?
 - (ii) What will be the form of this extra energy?

Unit 2: PARTICLES & WAVES

Wave Particle Duality

- 14. For a certain metal, the energy required to eject an electron from the atom is 3.3×10^{-19} J.
 - (a) Calculate the minimum frequency of radiation required to emit a photoelectron from the metal.
 - (b) Explain whether or not photoemission would take place using radiation of:
 - (i) frequency 4×10^{14} Hz
 - (ii) wavelength 5×10^{-7} m.
- 15. Radiation of frequency 5.0×10^{14} Hz can eject electrons from a metal surface.
 - (a) Calculate the energy of each photon of radiation.
 - (b) If the electrons are ejected from the surface with kinetic energy of 7.0×10^{-20} J, calculate the work function of the metal.
- 16. Calculate the kinetic energy of the photoelectrons emitted from sodium (work function = 2.9×10^{-19} J) when illuminated by radiation of frequency 5.0×10^{14} Hz.
- 17. Photoelectrons are ejected from zinc with a kinetic energy of 2.0×10^{-20} J. Calculate the frequency and wavelength of the incident radiation if the threshold frequency is 8.7×10^{14} Hz.
- 18. Zinc has a work function of $6.95 \times 10^{-19} \, \text{J}$.
 - (a) Calculate the maximum wavelength of light which will produce photoelectrons from a negatively charged plate.
 - (b) If a mercury lamp of wavelength 255 nm is shone on the negatively charged zinc plate, calculate the maximum kinetic energy of the resulting photons.
- 19. A metal has a work function of 3.04 x 10⁻¹⁹ J.
 - (a) If a radiation of wavelength 5.00×10^{-7} m falls on the metal surface what would be the energy of the electrons ejected?
 - (b) If the mass of an electron is 9.10×10^{-31} kg, with what velocity will it be ejected from the surface ?
- 20. An argon laser is used in medicine to remove fatty deposits in arteries by passing the laser light along a length of optical fibre. The energy of this light is used to heat up a tiny metal probe to a sufficiently high temperature to vaporise the fatty deposit.

The laser has a power of 8.0 W. It emits radiation with a wavelength of 490 nm.

- (a) How much energy is delivered from the laser in 5 s?
- (b) Calculate the number of photons of this radiation required to provide the 5 s pulse of energy from the 8·0 W laser.

