
Advanced Higher Physics 
Uncertainties 

Study Guide 
 

4.1 Units, prefixes and scientific notation 
 
 1  Use SI units of all physical quantities appearing in the ‘Study Guide’. 
 
 2  Give answers to calculations to an appropriate number of significant figures. 
 
 3  Check answers to calculations. 
 
 4 Use prefixes (p, n, μ, m, k, M, G). 
 
 5  Use scientific notation. 
 
 
 

4.2 Uncertainties 
 

 1  State that all instruments are subject to calibration uncertainty. 
 
 2  Express the numerical result of an experiment and its uncertainty, making appropriate  
  use of significant figures. 
 
 3  Combine the calibration uncertainty, reading uncertainty, and random uncertainty to  
  obtain the total uncertainty. 
 
 4  Calculate the uncertainty in a quantity raised to a power. 
 
 5 Calculate the uncertainty in a product or quotient of quantities. 
 
 6  Calculate the uncertainty in a sum or difference of quantities. 
 
 7  Estimate the uncertainty in the gradient and intercept of a straight-line graph. 
 
 8  Represent, in graphical analysis, the uncertainties in readings as error bars for the points  
  on the graph representing the readings. 
 
 9  Compare critically the numerical result of one experiment with that of another  
  experiment. 
  



UNCERTAINTIES 
Summary of the Basic Theory associated with Uncertainty 
It is important to realise that whenever a physical quantity is being measured there will always 
be a degree of inaccuracy associated with the measurement. Thus, whenever experimental 
measurements are made these inaccuracies or uncertainties should be estimated. 
 
Calibration Uncertainty 
All measuring instruments have an associated inaccuracy known as the calibration uncertainty. 
For instance when a wooden metre stick is used to measure a length in the laboratory it is a fair 
estimate that the metre length of wood itself will be accurate to within 0.5 mm. The table 
below gives some typical examples of calibration uncertainties: 
 

Instrument  Calibration Uncertainty 
Metre Stick (wood)  0.5 mm 
Ruler made of Steel  0.1 mm 
Digital Meter  0.5% of reading + 1 in last digit 

 
Thus for an ammeter reading (from a digital meter) of 3.54 A the uncertainty will be: 

(0.5% of 3.54 A) + 0.01 = 0.018 + 0.01 = 0.02 + 0.01 = 0.03 A 
Thus final value of current should be quoted as: current =     3.54 ± 0.03 A. 
 
Systematic Effects 
As the name suggests, uncertainties can arise because of the system used to gather the 
information. The measurement of time is a good example of this. If you were using a stopwatch 
which after much use now runs slow, the uncertainty in its use may in fact be worse than its 
calibration uncertainty. This effect would only be detected by using an independent instrument 
to check the stop watch. Similarly if a student consistently measured the oscillation of a 
pendulum wrongly e.g. started the stopwatch at the wrong point in the first swing, then the 
period of the pendulum would have a systematic uncertainty. This uncertainty can be detected 
if several different numbers of swings are timed and T is plotted against l. The graph will not 
pass through the origin as it should, if the experiment had been carried out properly. 
 
Scale Reading Uncertainty 
This value indicates how well an instrument scale can be read. 
An estimate of the reading uncertainty for an analogue scale is taken as ± half the smallest 
scale division. For very widely spaced scales a reasonable estimate should be made. For a digital 
scale, the reading uncertainty is taken as ± 1 in the least significant digit. This has been 
mentioned above under calibration uncertainty. 
 
Random Uncertainties 
It is always advisable to repeat measurements if it is possible. This allows us to check that 
nothing has gone wrong in taking the first measurement. We usually find that there is a spread 
of values for the quantity being measured and the random uncertainty in the measurements 
can be determined from this spread.  



Mean and random uncertainty in the mean 
The mean of a number, n, of measurements of quantity P is found in the usual way: 

Pmean =
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The approximate random uncertainty in the mean is found from: 

uncertainty in P =
୔maximum−୔minimum

௡
 

 
This method is suitable if we have more than about five readings. 
 
Combining Uncertainties 
Addition and Subtraction 
When two quantities, A and B, are added (or subtracted) the uncertainty (S) in the sum (or 
difference) is given by: 

𝑆 =  ඥ(A)ଶ
 + (B)ଶ   where A is the uncertainty in A 

and B is the uncertainty in B. 
 
Thus subtracting two quantities which are nearly the same can result in very high percentage 
uncertainty. 
 
Multiplication and Division 
When two quantities, A and B, are multiplied or divided the fractional uncertainties are 
important. Thus if P = A x B or if 𝑃 =

஺

஻
 

 

𝑃

𝑃
 =  ඨ(

A

A
)ଶ

 +  (
B

B
)ଶ 

 
This must also apply to percentage uncertainties. 

% 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑃 =  ඥ(% 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝐴)ଶ
 + (% 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝐵)ଶ

 

 
Powers 
If P = An then:   % uncertainty in P = n x % uncertainty in A. 
For example, if the % uncertainty in a distance s is 1.5% and our formula involved s2 then the    
% uncertainty in s2 would be 3%. 
 
  



Graphs 
Individual points should include ‘error bars’ where appropriate. These are used to enable the 
best straight line or curve to be drawn. 
 
When plotting a straight line graph it is possible to get the uncertainty in the gradient by 
employing the “centroid” method. This involves finding the maximum and minimum gradients 
from the scatter of points which make up the graph. 
 
First the centroid is found. This is the mean of all the x co-ordinates and the mean of all the y 
co-ordinates. The best straight line is drawn through this centroid. A top line is then drawn, 
parallel to this best line, so that it passes through the point (not its error bar) that lies furthest 
above the best line. A similar line is drawn below, to give a parallelogram. The gradients of the 
two diagonals of this parallelogram, the ‘worst lines’, are then calculated. Let these be m1 and 
m2. 
 
The uncertainty in the gradient is given by: ∆𝑚 =

௠భି௠మ

ଶඥ(௡ିଶ)
 

where n is the number of points on the graph (excluding the centroid). 
 
The uncertainty in the intercept is found by noting where the two ‘worst lines’ cut the y axis. 
Let these be c1 and c2. 
The uncertainty in the intercept is given by: ∆𝑐 =

௖భି௖మ

ଶඥ(௡ିଶ)
 

 
Dominant Uncertainty in an Expression 
Consider three quantities multiplied together in an expression. If one quantity has a much 
larger percentage uncertainty than the other two, then this largest uncertainty can be applied 
to the quantity in question. 
 
For example, if in equation Ep = m g h, the % uncertainty in m is 1%; the % uncertainty in g is 1% 
and the % uncertainty in h is 5% then we can safely say that the % uncertainty in Ep is 5%. 
Check: % uncertainty in 𝐸𝑝 = √ 1ଶ  +  1ଶ  +  5ଶ  =  √27  =  5.2%. 
 
Thus, taking 5% as the overall estimate of uncertainty is a statistically acceptable approximation 
as long as the dominant uncertainty is considerably more than the other uncertainties. As a 
general rule a dominant uncertainty should be three times any other uncertainty. Thus if an 
uncertainty is less than a third of another uncertainty it can be neglected. 
  



Comparing Results of Experiments 
If we arrive at a numerical result in the form x ± ∆x, this allows us to compare the results for 
other experiments measuring the same quantity. Doing this may allow us to evaluate how 
successful or otherwise the method has been. 
 
A good example of this is an analysis of two different methods of measuring g, the acceleration 
due to gravity. 
 
Method A - pendulum result: g = 9.5 ± 0.4 m s-2 
Method B - oscillating spring result: g = 9.82 ± 0.09 m s-2 
 
Both of these values lie within the accepted value for g in Scotland which is between 9.815 m s-2 
and 9.819 m s-2. However we can say that the pendulum method is obviously more inaccurate 
but nevertheless still a valid measure. If the value had been 9.5 ± 0.2 m s-2 then this would have 
indicated that the method used could have been improved since it lies outside the accepted 
value for g. A repeat of the measurements should be carried out. 
  



UNCERTAINTIES TUTORIAL 4.0 
 
1 Three packages have to be added to the payload of the Space Shuttle. Their masses have been  

measured as follows: 
m1  =  (112 ± 1) kg m2  =  (252 ± 2) kg and  m3  =  (151 ± 1) kg. 
Calculate the total mass to be added and the uncertainty in the total. 
 

2 When using a travelling microscope the following measurements were made. 
Reading 1  =  (112.1 ± 0.2) mm  Reading 2  =  (114.5 ± 0.2) mm. 
Calculate: 

 (a) the percentage uncertainty in the sum of these readings 
 (b) the percentage uncertainty in the difference of these readings 
 (c) Which of these, sum or difference, is usually needed for the travelling microscope? 
 
3 A block of building material has been carefully machined to undergo tests.  Its dimensions and  

mass are as follows: 
    length  =  0.050 ± 0.001 m 
    breadth  =  0.100 ± 0.001 m 
    height  =  0.040 ± 0.001 m 
    mass  =  0.560 ± 0.002 kg 
(a) From this data, calculate the density of this material. 
(b) Find the uncertainty in this value of density and express it as a percentage. 
 

4 The radius of a sphere is measured to be  (1.2 ± 0.1) x 10-2 m.  

The volume of a sphere is given as   
4
3   r3 , where  r  is the radius of the sphere. Calculate the 

volume of the sphere, quoting the uncertainty in your answer.  
 

5 A uniform disc is to be used as a flywheel in a new design of small engine. Its moment of inertia has 
to be known. The following method is used: 
 
The diameter of the disc is measured with a metre stick at 8 different positions round the rim and its 
mass is measured on a balance which was accurate to 10 g. 
Diameters    0.245 m 0.249 m 0.255 m 0.248 m 
    0.243 m 0.247 m 0.251 m 0.246 m 
Mass      4.04 kg 

Use the formula for the moment of inertia  =  
1
2  M R2 , where  R is the radius of the disc.  Find the 

moment of inertia, quoting a value for the uncertainty associated with your answer. 
 

6 Calculate the refractive index of a glass block, including the uncertainty, from the following 
information: 
Angle of incidence = (46 ± 1)°    Angle of refraction = (28 ± 1)°.   

 
  


