1.1 Introduction to Waves

1	State that a wave transfers energy.
2	Carry out calculations involving the relationship between distance, time and speed in problems on water waves, sound waves, radio waves and light waves.
3	Use the following terms correctly in context: wave, frequency, wavelength, speed, amplitude, period.
4	State that the frequency of a wave is the number of waves which pass a particular point every second.
5	Carry out calculations involving the relationship between frequency and period.
6	State the difference between a transverse and longitudinal wave and give examples of each.
7	State that sound can pass through solids, liquids and gases.
8	State that sound cannot pass through a vacuum.
9	Give an example which shows that the speed of sound in air is less than the speed of light in air.
10	Describe a method for measuring the speed of sound in air using the relationship between distance, time and speed.
11	State that the speed of sound changes as it moves from one material to another.
12	Carry out calculations involving the speed of sound.
13	State that the higher the pitch of a sound the larger the frequency.
14	State that the louder the volume of a sound the greater the amplitude.

1.1 Introduction to Waves

15 Identify from oscilloscope traces the signal which would produce:

- (a) the louder sound
- (b) the higher frequency.
- State that if two sounds are one octave apart, the frequency of one is double the other.
- □ 17 State that the frequency produced by a vibrating string can be increased by shortening the length of the string and increasing the tightness of the string.
- State that the frequency produced by a vibrating air column can be increased by shortening the length of the air column.
- **1**9 State that the normal range of human hearing is from 20 hertz to 20,000 hertz.
- 20 State that high frequency sounds beyond the range of human hearing are called ultrasounds.
- Give one example of a use of ultrasound in medicine.
- Give one example of a non-medical use of ultrasound.
- **23** State that sound levels are measured in decibels.
- Give two examples of noise pollution.
- **2**5 State that excessive noise can damage hearing.
- **2**6 State that hearing can be protected by ear protectors.
- **Q** 27 State that some ear protectors rely upon noise cancellation.
- State that the output signal from an amplifier has the same frequency but a bigger amplitude than the input signal.

1.1 Introduction to Waves

- State the function of each of the three major components needed to amplify speech (microphone, amplifier, loudspeaker).
- **30** Explain why your recorded voice sounds different to you.
- 31 Describe a method of measuring the speed of sound in air, using the relationship between distance, time and speed.
- Give an example which shows that the speed of light is greater than the speed of sound.
- 33 Carry out calculations involving the relationship between speed, wavelength and frequency for waves.
- 34 Explain the term diffraction in terms of waves and give examples of where it is useful.
- **3**5 Explain how the wavelength affects the diffraction of the wave.

1.2 Electromagnetic Spectrum

- State in order of increasing wavelength the bands of the electromagnetic spectrum: gamma rays, X rays, ultraviolet, visible light, infrared, microwaves, TV and radio.
- State sources and detectors of the different bands of the electromagnetic spectrum.
- Give examples of applications for each band of the electromagnetic spectrum.
- 4 State that the higher the frequency of electromagnetic radiation the greater the energy of the wave.
- □ 5 State that all radiations in the electromagnetic spectrum travel at the speed of light.

1.3 Light

- □ 1 State that refraction is the change in the speed of light as it passes from one material to another.
- Draw diagrams to show the change in direction with regards to the normal as light passes from air to glass and glass to air.
- 3 Use correctly in context the terms angle of incidence, angle of refraction and normal.
- Describe and draw the shapes of converging and diverging lenses.
- **Describe the effect of a converging and a diverging lens on parallel rays of light.**
- **G** State the meaning of long and short sight.
- **7** Explain the use of lenses to correct long and short sight.
- **a** 8 State that light can be reflected.
- 9 Use correctly in context the terms: angle of incidence, angle of reflection and normal when a ray of light is reflected from a plane mirror.
- **1** Explain, with the aid of a diagram, what is meant by 'the critical angle'.
- **11** Explain, with the aid of a diagram, what is meant by 'total internal reflection'
- Describe the principle of operation of an optical fibre transmission system.

1.4 Introduction to Nuclear Radiation

1	Describe a simple model of the atom which includes protons, neutrons and
	electrons.

- **2** State what is meant by an alpha particle, beta particle and gamma ray.
- 3 State that the energy from radiation may be absorbed in the medium through which it passes.
- 4 State the approximate range through air, and absorption of alpha, beta and gamma radiation.
- **5** Explain the term ionisation.
- □ 6 State that alpha particles produce much greater ionisation density than beta particles or gamma rays.
- **7** Identify natural sources of background radiation.
- **a** 8 Identify artificial sources of background radiation.

1.6 Dosimetry

1	State that the absorbed dose <i>D</i> is the energy absorbed per unit mass of the
	absorbing material.

- State that the gray, Gy, is the unit of absorbed dose and that one gray is one joule per kilogram.
- **G** 3 Carry out calculations using the relationship D = E/m
- 4 State that the risk of biological harm from an exposure to radiation depends on:
 a) the absorbed dose
 b) the kind of radiation, eg α, β, slow neutron
 - c) the body organs or tissue exposed.
- **5** State that a radiation weighting factor w_R is given to each kind of radiation as a measure of its biological effect.
- **G** State that the equivalent dose *H* is the product of *D* and w_R and is measured in sieverts, Sv.
- **a** 7 Carry out calculations involving the relationship $H = D w_R$.
- 8 State that the equivalent dose rate H is the equivalent dose received in a given time.
- **9** Carry out calculations using the relationship $\dot{H} = H/t$.

1.5 Activity, Half-life & Safety

- □ 1 State that the activity of a radioactive source is measured in becquerels, Bq, where one becquerel is one decay per second.
- \Box 2 Carry out calculations involving the relationship A = N/t
- **3** State that the activity of a radioactive source decreases with time.
- **4** State the meaning of the term 'half-life'.
- 5 Describe the principles of a method for measuring the half-life of a radioactive source.
- □ 6 Carry out calculations to find the half-life of a radioactive isotope from appropriate data.
- Describe the safety procedures necessary when handling radioactive substances.
- State that the equivalent dose is reduced by shielding, by limiting the time of exposure or by increasing the distance from a source.
- 9 Identify the radioactive hazard sign and state where it should be displayed.

1.7 Applications of Nuclear Radiation

1	State that radiation can kill living cells or change the nature of living cells.
2	Describe medical uses of radiation based on the fact that radiation can destroy cells.
3	Describe uses of radiation based on the fact that radiation is easy to detect.
4	Describe the principles of the operation of a nuclear reactor in terms of fuel rods, moderator, control rods, coolant and containment vessel.
5	State the advantages and disadvantages of using nuclear power for the generation of electricity.
6	Describe the problems associated with the disposal and storage of radioactive waste.
7	Describe in simple terms the process of fission.
8	Explain in simple terms a chain reaction.
9	Describe in simple terms the process of fusion.
10	State that nuclear fusion is the reaction which occurs in the sun.