3.1 Conservation of Energy

At the end of the section you should be able to :

1	State that energy cannot be created or destroyed; it is changed from one form to another.
2	State that work done is a measure of the energy transferred.
3	Carry out calculations involving the relationship between work done, unbalanced force and distance.
4	Carry out calculations involving the relationship between change in gravitational potential energy, mass, gravitational field strength and change in height.
5	Carry out calculations involving the relationship between kinetic energy, mass and velocity.
6	Carry out calculations involving energy being transferred from one form to another.
7	State that systems are not 100% efficient and explain what has happened to the energy 'lost'.

3.2 Charge Carriers and Electric Fields

At the end of the section you should be able to: 1 State that there are two types of electrical charge; positive and negative. State that electrons are free to move in a conductor. 2 Describe electrical current in terms of the movement of charges around a circuit. 3 State that electrical current is defined as the electrical charge transferred per unit 4 time. Carry out calculations involving Q = It. 5 6 Explain in terms of current the terms d.c. and a.c. State that the quoted value of an alternating voltage is less than its peak value. 7 State that a d.c. supply and an a.c. supply of the same quoted value will supply 8 the same power to a given resistor. State that the frequency of the mains supply is 50 Hz. 9

State that the mains supply voltage for the UK is 230V a.c.

10

3.3 Potential Difference and Circuits

At the end of the section you should be able to :

1	State that, in an electric field, an electric charge experiences a force.
2	State that an electric field applied to a conductor causes the free electric charges In it to move.
3	State that the voltage of a supply is a measure of the energy given to the charges in a circuit.
4	Identify the circuit symbols and state the function of an ammeter, voltmeter, battery, resistor, variable resistor, fuse, switch, lamp, LED, photovoltaic cell, capacitor, diode, LDR, thermistor and relay.
5	Draw circuit diagrams to show the correct positions of an ammeter and voltmeter in a circuit.
6	State that in a series circuit the current is the same at all positions.
7	State that the sum of the potential differences across the components in series is equal to the voltage of the supply.
8	State that the sum of the currents in parallel branches is equal to the current drawn from the supply.
9	State that the potential difference across components in parallel is the same for each component
10	State that <i>V/I</i> for a resistor remains approximately constant for different currents.
11	State how the temperature affects the resistance of a substance.

National 5 Physics **ELECTRICITY AND ENERGY**

Study Guide

12	Carry out calculations involving the relationship $V = IR$.
13	Carry out calculations involving the relationships $R_T = R_1 + R_2 + R_3$ and $1/R_T = 1/R_1 + 1/R_2 + 1/R_3$.
14	State the benefits of using a ring circuit instead of an ordinary parallel circuit.
15	State that a potential divider circuit consists of a number of resistors, or a variable resistor, connected across a supply.
16	Carry out calculations involving potential differences and resistances in a potential divider.
17	Draw and identify the circuit symbol for an NPN transistor.
18	Draw and identify the circuit symbol for an n-channel enhancement MOSFET.
19	State that a transistor can be used as a switch.
20	Explain the operation of a simple transistor switching circuit.

3.4 Electrical Energy and Power

At the end of the section you should be able to :

1	State that the electrical energy transformed each second = VI.
2	State the relationship between energy and power.
3	Carry out calculations using $P = VI$ and $E = Pt$.
4	Carry out calculations involving the relationships between power, current, voltage and resistance.
5	Know the approximate power rating of various electrical appliances.
6	Choose the correct fuse for an appliance if you are told its power rating.
7	Explain power loss in transmission lines.

National 5 Physics ELECTRICITY AND ENERGY

Study Guide

3.5 Heat

At the end of the section you should be able to :				
	1	State that the kinetic energy of a substance is a measure of the mean kinetic energy of the particles.		
	2	Explain the connection between temperature and heat energy.		
	3	State that the same mass of different materials needs different quantities of heat energy to change their temperature by one degree celsius.		
	4	Carry out calculations involving specific heat capacity.		
	5	State that heat is gained or lost by a substance when its state is changed.		
	6	State that a change of state does not involve a change in temperature.		
	7	Carry out calculations involving specific latent heat.		

National 5 Physics **ELECTRICITY AND ENERGY**

Study Guide

3.6 Gas Laws

At the end of the section you should be able to: 1 State that pressure is the force per unit area exerted on a surface. Carry out calculations involving pressure, force and area. 2 Describe how the kinetic model accounts for the pressure of a gas. 3 State that the pressure of a fixed mass of gas at constant temperature is inversely 4 proportional to its volume. State that the pressure of a fixed mass of gas at constant volume is directly 5 proportional to its temperature measured in Kelvin. State that the volume of a fixed mass of gas at constant pressure is directly 6 proportional to its temperature measured in Kelvin. Explain what is meant by absolute zero of temperature. 7 Carry out calculations to convert temperatures in $^{\circ}$ C to K and vice versa. 8 Carry out calculations involving pressure, volume and temperature of a fixed mass 9 of gas using the general gas equation. 10 Explain the gas laws in terms of the kinetic model.