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Simple Harmonic Motion (SHM) 
 
If an object is subject to a linear restoring force, it performs an oscillatory motion termed ‘simple 
harmonic’. Before a system can perform oscillations it must have (1) a means of storing potential 
energy and (2) some mass which allows it to possess kinetic energy. In the oscillating process, 
energy is continuously transformed between potential and kinetic energy. 
 
Note: any motion which is periodic and complex (i.e. not simple!) can be analysed into its simple 
harmonic components (Fourier Analysis). An example of a complex waveform would be a sound 
wave from a musical instrument.  
 
Examples of SHM 

Example and Diagram Ep stored as: Ek possesed 

by moving: 

mass on a coil spring 
 

 
 

 
 
 
elastic energy of  
spring 

 
 
 
mass on spring 

Simple pendulum 

 
 

 
 
 
potential energy 
(gravitational) of 
bob 

 
 
 
mass of the 
bob 
 

Trolley tethered between springs 

 
 

 
 
 
elastic energy of 
the springs 

 
 
 
mass of the 
trolley 

Weighted tube floating in a liquid 

 

 
 
potential energy 
(gravitational) of 
the tube 

 
 
mass of the 
tube 
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Note that for the mass oscillating on the spring, there is always an unbalanced force acting on the 
mass and this force is always opposite to its direction of motion.  The unbalanced force is 
momentarily zero as the mass passes through the rest position.  
 
To see this, consider the following: when the mass is moving upwards past the rest position, the 
gravitational force (downwards) is greater than the spring force.  Similarly when moving 
downwards past the rest position, the spring force (upwards) is greater than the gravitational force 
downwards. 
 
This situation is common to all SHMs.  The force which keeps the motion going is therefore called 
the restoring force. 
 

Definition of Simple Harmonic Motion 
 
When an object is displaced from its equilibrium or at rest position, and the unbalanced force is 
proportional to the displacement of the object and acts in the opposite direction, the motion is said 
to be simple harmonic. 
 

Graph of Force against displacement for SHM  
 
  F  =  - kx 
 
F is the restoring force (N) 

k is the force constant (N m-1) 
x is the displacement (m) 
 
The negative sign shows the direction 
of vector F is always opposite to vector x. 
 

 
 
If we apply Newton’s Second Law in this situation the following alternative definition in terms of 
acceleration as opposed to force is produced. 
 

F = ma = m 
d2x

dt2
   =  - kx 

a = -  
k
m

  x thus   
d2x

dt2
   = -  

k
m

  x 

 
Remember that k is a force constant which relates to the oscillating system.  

The constant, 
k
m

   is related to the period of the motion by  2 = 
k
m

    ,   = 
2
T

  

 
 
This analysis could equally well have been done using the  y  co-ordinate. 
 

Thus an equivalent expression would be     
d2y

dt2
 = -  2y   .   

 

x/m

F/N

F = -kx

graph

0
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Kinematics of SHM 
 
Point P is oscillating with SHM between two fixed points R and S.  The amplitude of the oscillation 
is therefore ½ RS and this is given the symbol  a.  The displacement y is the vector OP.  

 
 
O is the origin, position of zero displacement 
 
P is the instantaneous position at displacement y 
 
Upwards is considered the positive direction. 
 
 

The period, T, of the motion is the time taken to complete one oscillation, e.g.  
path O R O  S O. 
 
The frequency, f, is the number of oscillations in one second. 

    f = 
1
T

   and because  = 
2


   = 2f  

 
Solutions of Equation for SHM 

The equation    
d2y

dt2
  = -  2 y   could be solved using integration to obtain equations for velocity  

v  and displacement  y  of the particle at a particular time  t.  However, the calculus involves 
integration which is not straightforward.  We will therefore start with the solutions and use 
differentiation. 

The possible solutions for the displacement  y  at time  t  depend on the initial conditions and are 
given by: 
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Linking SHM with Circular Motion  

 
This allows us to examine the mathematics of the motion and is provided for interest.  
 
If the point Q is moving at constant speed, v, in a circle, its projection point P on the  y  axis will 

have  displacement  y = A cos   
 
 positive direction of y is upwards 
 

  note that sin  = 
QP
OQ

  

     sin θ =
√𝐴2−𝑦2

𝐴
  

 
(Viewed from the side this motion will appear identical to the 
one dimensional motion described on the previous page) 
 
 
 
 

The velocity of point P is:    vp = 
d(y)
dt

   = 
𝑑

𝑑𝑡
(Acos θ)   and    = t 

 

 vp = 
𝑑

𝑑𝑡
(Acos ωt)    v𝑝 = −Aωsinωt    (negative sign: assume P moving down)  

 

Special cases:  when y = 0,      = 


2
   and  sin 



 v𝑚𝑎𝑥 = ±Aω and occurs as P goes through the origin in either direction. 
 

  when y = ± A,   = 0 or  and sin  = 0 
 

  vmin = 0     and occurs as P reaches the extremities of the motion. 



The acceleration  of point P is: a𝑝 =
𝑑𝑣𝑝

𝑑𝑡
=

𝑑

𝑑𝑡
(−Aωsinωt)  

 

      a𝑝 = −Aω2cosωt   

 

Special cases:  when y = 0,      = 


2
   and  cos 



  a𝑚𝑖𝑛 = 0 and occurs as P goes through the origin in either direction. 
 

  when y = ± A,   = 0 or  and cos  = 1 
 

  a𝑚𝑎𝑥 = ±Aω2  and occurs as P reaches the extremities of the motion. 
 
Note:  the acceleration is negative when the displacement, y, is positive and vice versa; i.e. they 

are out of phase, see graphs of motion below.  Knowledge of the positions where the 
particle has maximum and minimum acceleration and velocity is required 
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To understand these graphs it is helpful if you see such graphs being generated using a motion 
sensor.  In particular, pay close attention to the phases of the graphs of the motion and note that 
the basic shape is that of the sine/cosine graphs.  
 

Displacement-time     Summary of Equations 

 

 

𝑦 = Acos 𝜔𝑡 
 

Velocity-time  

 

 

          𝑣 = ±A 𝜔 sin 𝜔𝑡 = ±√𝐴2 − 𝑦2 

 
 

Acceleration-time  

 

 
 

𝑎 = −A 𝜔2 cos 𝜔𝑡 
substitute for y: 

 

𝑎 = − 𝜔2𝑦 
 

Note that this form, acceleration = - 2 y, is consistent with our definition of SHM 2 is a positive 
constant.  This implies that the sine and cosine equations must be solutions of the motion. 
 
Compare this constantly changing acceleration with situation where only uniform acceleration 
was considered. 
 
The equation used in a particular situation depends on the initial conditions. 

  Thus:  if  y = 0 at time  t = 0  use  y = A sint         

    if  y = A at time  t = 0  use  y = A cost 
 

Another possible solution for SHM is:  y = A sin(t + ) where    is known as the phase angle. 
 

y

t

v

t

a

t
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Example 
 

An object is vibrating with simple harmonic motion of amplitude 0.02 m and frequency  5.0 Hz. 

Assume that the displacement of the object, y = 0 at time, t = 0 and that it starts moving in the 

positive y-direction. 
(a) Calculate the maximum values of velocity and acceleration of the object. 
(b) Calculate the velocity and acceleration of the object when the displacement is  0.008 m. 
(c) Find the time taken for the object to move from the equilibrium position to a displacement of 

0.012 m. 
 

Solution 

Initial conditions require; y = A sin t; v = A cos t;   and  a = - x  

  f  =  5 Hz    = 2f  =  31.4 rad s-1 
 

 (a) vmax  =  A  =  31.4 x 0.02  =  0.63 m s-1 

  amax  =  - 2 A = -(31.4)2 x 0.02  =  -19.7 m s-2 

 

 (b) v = ±  √𝐴2 − 𝑦2=  ±  31.4 0.022 - 0.0082   =  ± 0.58 m s-1 

  a = - 2 y = - 31.42 x 0.008  =  - 7.9 m s-2 
 

 (c) use   y = A sin t ;   0.012  =  0.02 sin 31.4t     (when y  =  0.012 m) 

  sin 31.4 t  =  
0.012
0.02

   =  0.6  giving  31.4 t  =  0.644  and t = 
0 644
314
.

.
 

  Thus       t  =  0.0205 s        (Remember that angles are in radians) 
 
 
 

Proof that the Motion of a Simple Pendulum approximates to SHM 
 

The sketches below show a simple pendulum comprising a point mass, m, at the end of an 
inextensible string of length  L. The string has negligible mass.  
 

 
 

The restoring force F  on the bob is F = - mg sin 

If the angle is small (less than about 10°) then sin= in radians  and    =   
x

L
 

Then   F = - mg= - mg 
x
L
     Thus  F  = -   

mg
L

  x 

 
The restoring force therefore satisfies the conditions for SHM for small displacements. 

Then acceleration is   a = - 
g
L
  x which if compared with  a  = - 2 x    gives   2 = 

g
L
   ( = 2f)  

     f = 
1

2
  

g
L
  and the period of the pendulum  T =  2

L
g
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Energy Equations for SHM 
 
Consider the particle moving with simple harmonic motion below.   

The particle has maximum amplitude A  and period T = 
2


 

 
 

Kinetic energy equation for the particle 
 

Ek  = 
1
2  m v2      = 

1
2

   m [±  √𝐴2 − 𝑦2 ]2 

𝐸𝑘 =
1

2
𝑚𝜔2(𝐴2 − 𝑦2) 

 

Potential energy equation for the particle 
 
When at position O the potential energy is zero, (with reference to the equilibrium position) and the 
kinetic energy is a maximum. 

The kinetic energy is a maximum when y = 0:    Ekmax =  
1

2
  m 2 A2  

At point O      total energy  E  =  Ek  +  Ep  =  
1
2  m 2 A2  + 0   

E  =  
1
2  m 2 A2   or   E  =  

1
2  k A2 because 2 = 

k
m

  

 

The total energy E is the same at all points in the motion.   

Thus for any point on the swing:  as above E  =  Ek  +   Ep 

1
2  m 2 A2    =   

1
2

   m 2 (A2  -  y2)   +   Ep 

  Ep  =  
1
2
 m 2 y2       

 
The graph below shows the relation between potential energy, Ep, kinetic energy Ek, and the total 

energy of a particle during SHM as amplitude y changes from  - A to + A. 
 

y

O

particle

- a

positive direction  
 
of y is

-A 
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Example on energy and SHM 
 
The graph below shows how the potential energy, Ep, of an object undergoing SHM, varies with its 

displacement, y.  The object has mass 0.40 kg and a maximum amplitude of 0.05 m. 
 

 
(a) (i) Find the potential energy of the object when it has a displacement of  0.02 m. 

 (ii) Calculate the force constant, k for the oscillating system. (k should have unit  N m-1). 

(b) Find the amplitude at which the potential energy equals the kinetic energy. 
 

Solution  
(a) (i) From graph  Ep = 0.10 J 

 (ii)    Ep  =  
1
2  k y2  

          0.1  =  
1
2

  k (0.02)2 

        k  =  
0.2

 (0.02)2
   =  500 N m-1 

 
(b)              Ep  =  Ek 

     
1
2

  k y2   =    
1
2

  m 2( A2 - y2 )    

         =  
1
2  k (A2 - y2)       since   2 = 

k
m

  

    y2  =  A2 - y2  or   2 y2 = A2 
 

    y   =  
𝐴

√2
    when  Ep = Ek 

    y =  
0.05

2
    =  0.035 m 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Ep/J

y/m
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Damping of Oscillations 
 
Oscillating systems, a mass on a spring, a simple pendulum, a bobbing mass in water, all come to 
rest eventually.  We say that their motion is damped.  This means that the amplitude of the motion 
decreases to zero because energy is transformed from the system.  A simple pendulum takes a 
long time to come to rest because the frictional effect supplied by air resistance is small - we say 
that the pendulum is lightly damped.  A tube oscillating in water comes to rest very quickly because 
the friction between the container and the water is much greater - we say that the tube is heavily 
damped.   
 
If the damping of a system is increased there will be a value of the frictional resistance which is just 
sufficient to prevent any oscillation past the rest position - we say the system is critically damped.   
 
Systems which have a very large resistance, produce no oscillations and take a long time to come 
to rest are said to be overdamped.  In some systems overdamping could mean that a system 
takes longer to come to rest than if underdamped and allowed to oscillate a few times.  
 
An example of damped oscillations is a car shock absorber which has a very thick oil in the 
dampers.  When the car goes over a bump, the car does not continue to bounce for long.  Ideally 
the system should be critically damped.  As the shock absorbers get worn out the bouncing may 
persist for longer.  
 
The graphs below give a graphical representation of these different types of damping. 
 
 

Damped oscillations 

 
Critically damped 

 

Overdamped  

 

  

y

t

y

t

y

t
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Waves  
 

Wave Motion 
 
In a wave motion energy is transferred from one position to another with no net transport of mass.  
Consider a water wave where the movement of each water particle is at right angles (transverse) 
to the direction of travel of the wave.  During the wave motion each particle, labelled by its position 
on the x-axis, is displaced some distance y  in the transverse direction.  In this case, "no net 
transfer of mass" means that the water molecules themselves do not travel with the wave - the 
wave energy passes over the surface of the water, and in the absence of a wind/tide any object on 
the surface will simply bob up and down.   
 
 

The Travelling Wave Equation 
The value of the displacement  y  depends on which particle of the wave is being considered.  It is 
dependent on the x value, and also on the time t  at which it is considered.  Therefore y  is a 
function of x  and t giving y  =  f(x,t).  If this function is known for a particular wave motion we can 
use it to predict the position of any particle at any time. 
 
Below are 'snapshots' of a transverse wave taken at different times showing how the displacement 
of different particles varies with position x. 
 
 
 
 
 
 
 
 
The following diagram shows the movement of one particle on the wave as a function of time. 
 

  
Initial condition at the origin: y = 0 
when  t = 0. 
 
 

 
 
For a wave travelling from left to right with speed v, the particle will be performing SHM in the     
y-direction.   
 
The equation of motion of the particle will be:  

 y = A sin t     where  A  is the amplitude of the motion. 
 
The displacement of the particle is simple harmonic.  The sine or cosine variation is the simplest 
description of a wave.   
 

When y = 0 at t = 0 the relationship for the wave is y = A sin t, as shown above.  

When y = A at t = 0 the relationship for the wave is y = A cos t.  
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Deriving the travelling wave equation 
 
Consider a snapshot of the wave as shown below. 

 

 
 

 
 

 

 

The time, t, for the wave disturbance to 
travel from (i) (x = 0) to (ii)  (x = x) 

is  
x
v

 . 

 

Consider particle (i) at position x = 0. 
The equation of motion of particle A is given by 

y = A sin t 
where t is the time at which the motion of particle A is observed. 
 
Now consider particle (ii) at position x = x and the time t = t. 
Since wave motion is a repetitive motion: 

motion of particle (ii) (x = x, t = t)  =  motion of particle (i) (x = 0, t = 
x
v

), 

[i.e. the motion of particle (ii) = motion of particle (i) at the earlier time of t = 
x
v

]. 

General motion of particle (i) is given by  y = A sin t, but in this case t = t − 
x
v

 

hence y = A sin t − 
x
v

). 

Motion of particle (ii) (x = x, t = t) is also given by y = A sin t − 
x
v

). 

In general: y = A sin t - 
x
v

)      also f    and v = f  

 y = A sin 2f(t - 
x
f

) which gives 

 

            y = A sin 2( ft - 
x


   ) 

 
for a wave travelling from left to right  
in the positive x-direction.  
 

The equation of a wave travelling right to left in the negative x-direction is 

   y = A sin 2( ft + 
x


   )  

 

The Intensity of a Wave 
 

The intensity of a wave is directly proportional to the square of its amplitude. 
 

intensity    A2 

 

Longitudinal and transverse waves 
 

With transverse waves, as in water waves, each particle oscillates at right angles to the 
direction of travel of the wave (left diagram). In longitudinal waves, such as sound 
waves, each particle vibrates along the direction of travel of the wave (right diagram) 

 

direction 
of wave 

ii 

i 

direction 
of 

vibrations 
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Principle of Superposition of Waveforms  
 
Travelling waves can pass through each other without being altered.  If two stones are dropped in 
a calm pool, two sets of circular waves are produced.  These waves pass through each other.  
However at any point at a particular time, the disturbance at that point is the algebraic sum of the 
individual disturbances.  In the above example, when a ‘trough’ from one wave meets a ‘crest’ from 
the other wave the water will remain calm. 
 
A periodic wave is a wave which repeats itself at regular intervals. All periodic waveforms can be 
described by a mathematical series of sine or cosine waves, known as a Fourier Series.  For 
example a saw tooth wave can be expressed as a series of individual sine waves. 

 y(t) = - 
1


  sin t  -  

1

2
 sin 2t  -  

1

3
  sin 3t  -  .............  

The graph below shows the first four terms of this expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
When all these terms are superimposed (added together) the graph below is obtained.  Notice that 
this is tending to the sawtooth waveform.  If more terms are included it will have a better saw tooth 
form. 
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Phase Difference 
 
A phase difference exists between two points on the same wave. 
 
Consider the snapshots below of a wave travelling to the right in the positive  
x-direction. 
 
 
 
 
 
 
 

Points O and D have a phase difference of  2  radians. 
They are both at zero displacement and will next be moving in the negative direction.  They are 

separated by one wavelength (). 
 

Points O and B have a phase difference of    radians.   
They both have zero displacement but B will next be going positive and O will be going negative. 

They are separated by /2.  Notice that points A and B have a phase difference of /2. 
 
The table below summarises phase difference and separation of the points. 
 

Phase difference Separation of points 

0 0 

 /4

 /2 

 

 

Notice that 
phase difference

separation of points
 =  

2


  =  constant. 

If the phase difference between two particles is when the separation of the particles is x,  

then 


x
 = 

2


. 

 

In general, for two points on a wave separated by a distance x the phase difference is given by: 
 

  =  2 
x


    

 

where  is the phase angle in radians 

 

Example 
A travelling wave has a wavelength of 60 mm.  A point P is 75 mm from the origin and a point Q is 
130 mm from the origin. 
(a)  What is the phase difference between P and Q? 
(b)  Which of the following statements best describes this phase difference: 
  ‘almost completely out of phase’;   ‘roughly ¼ cycle out of phase’;  

‘almost in phase’. 
 

Solution 
(a) separation of points  =  130 - 75  =  55 mm   =  0.055 m 

 phase difference       =   2
0 055
0 060
.
.

  =  5.76 radians 

(b) P and Q are separated by 55 mm which is almost one wavelength, hence they are ‘almost in 
phase’.  Notice that 5.76 radians is 330°, which is close to 360°. 
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Stationary Waves 
 
A stationary wave is formed by the interference between two waves, of the same frequency and 
amplitude, travelling in opposite directions.  For example, this can happen when sound waves are 
reflected from a wall and interfere with the waves approaching the wall. 
 
A stationary wave travels neither to the right nor the left, the wave ‘crests’ remain at fixed positions 
while the particle displacements increase and decrease in unison.  
 
  

 
A - antinodes 
 
N - nodes 
 
 
 

 
There are certain positions which always have zero amplitude independent of the time we 
observe them; these are called nodes.  
 

There are other points of maximum amplitude which are called antinodes. 

Note that the distance between each node and the next node is 


2
   and, that the distance between 

each antinode and the next antinode is  


2
  .  

 

Use of standing waves to measure wavelength 
 
Standing waves can be used to measure the wavelength of waves.  The distance across a number 
of minima is measured and the distance between consecutive nodes determined and the 
wavelength calculated.  This method can be used for sound waves or microwaves. 
 

Formula for standing waves 
Consider the two waves  y1 and  y2  travelling in the opposite direction, where 

  y1 = A sin 2( ft - 
x


  )  and y2 = A sin 2( ft + 

x


  ) 

When these two waves meet the resultant displacement y is given by 

  y  =  y1  +  y2    =  A sin 2( ft - 
x


  )  +  A sin 2( ft + 

x


  ) 

  y  =  2 A sin 2ft cos 
2x

 
             [using (A sin P) + (A sin Q)  =  2A sin

P + Q

2
cos

P - Q

2
] 

  Giving    y  =  2 A sin t cos 
2x

 
     

Notice that the equation is a function of two trigonometric functions, one dependent on time t  and 
the other on position  x .  Consider the part which depends on position.  We can see that there are 

certain fixed values of x for which  cos 
2x

 
    is equal to  zero.  These are   x =  



4
  , 

3
4

  ,  
5
4

  ,  etc.  

This shows that there are certain positions where y = 0 which are independent of the time we 
observe them - the nodes.  

The positions at which the amplitude of the oscillation is maximum are given by  cos 
2x

 
   = 1, that 

is   x =  0 , 


2
 ,   , 

3
2

  ,  etc.  These are points of maximum amplitude - the antinodes. 
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Interference - Division of Amplitude 
 
Producing interference 
 
Interference of waves occurs when waves overlap.  There are two ways to produce an interference 
pattern for light: division of amplitude and division of wavefront.  Both of these involve splitting the 
light from a single source into two beams.  We will consider division of amplitude first and division 
of wavefront in the next section. 
 

Division of amplitude 
 
This involves splitting a single light beam into two beams, a reflected beam and a transmitted 
beam, at a surface between two media of different refractive index.  In some cases multiple 
reflections can occur and more than two beams are produced.  Before we consider specific 
examples we need to consider some general properties of interference.  
 
 

Coherent sources 
 
Two coherent sources must have a constant phase difference.  Hence they will have the same 
frequency. 
 

To produce an interference pattern for light waves the two, or more, overlapping beams always 
come from the same single source.  When we try to produce an interference pattern from two 
separate light sources it does not work because light cannot be produced as a continuous wave.  
Light is produced when an electron transition takes place from a higher energy level to a lower 

energy level in an atom.  The energy of the photon emitted is given by E = hf where E is the 
difference in the two energy levels, f is the frequency of the photon emitted and h is Planck’s 
constant.  Thus a source of light has continual changes of phase, roughly every nanosecond, as 
these short pulses of light are produced.  Two sources of light producing the same frequency will 
not have a constant phase relationship so will not produce clear interference effects. 
 
This is not the case for sound waves.  We can have two separate loudspeakers, connected to the 
same signal generator, emitting the same frequency which will produce an interference pattern. 
 
 

Path Difference and Optical Path Difference 
 
Sources S1 and S2 are two coherent sources in air. 

S

s

o

urS

Q

1

2  
The path difference is (S2Q - S1Q).  For constructive interference to take place at Q, the waves 

must be in phase at Q.  Hence the path difference must be a whole number of wavelengths. 

(S2Q - S1Q) =  m           where m = 0, 1, 2, 3, ...  

(Note:  the letter m is used to denote an integer, not  n,  since we use  n  for refractive index.) 

 

Similarly, for destructive interference to take place the waves must be out of phase at Q by /2 
(that is a ‘crest’ from S1 must meet a ‘trough’ from S2). 

   (S2Q - S1Q) = (m + 
1
2
  ) 
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Optical path difference 
 
In some situations the path followed by one light beam is inside a transparent material of refractive 
index, n.  Consider two coherent beams S1 and S2 where S1P is in air and S2P is in perspex of 
refractive index n = 1.5.  We will consider the point P itself to be in air. 
 
 
 
 
 

The geometrical path difference S1P - S2P is zero.  
 
But will there be constructive interference at P? 
  

 

The wavelength inside the perspex is less than that in air perspex  = 
 air

1.5
.  Hence the waves from 

S1 and S2 may not arrive at P in phase.  For example, if there were exactly Z whole waves 
between S1P, there will be 1.5 x Z waves between S2P which may or may not be a whole number 
of wavelengths.      
 
The optical path length must be considered not the geometrical path length. 
 

Optical path length = refractive index  ×  geometrical path length 

 
Thus the relationships for constructive and destructive interference must be considered for optical 
path lengths, S2P and S1P. 

 

For constructive interference (S2P - S1P) =  m             where m is an integer 
 

For destructive  interference (S2P - S1P) = (m + 
1
2
  )where m is an integer 

 
 

Phase difference and optical path difference 
 
The optical path difference is the difference in the two optical path lengths, namely (S2P - S1P) in 

our general example. 
The phase difference is related to the optical path difference: 
 

phase difference  =  
2


  ×  optical path difference 

where  is the wavelength in vacuum. 
 
Notice that when the optical path difference is a whole number of wavelengths, the phase 

difference is a multiple of 2, i.e. the waves are in phase.  
 

perspex 

S2 

S1 

P 
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Phase Change on Reflection 
 
To understand interference caused by multiple reflections it is necessary to consider what happens 
when a light wave moving in air hits a material such as glass. 
On a large scale we can see what happens to the wave when a pulse on a rope or 'slinky' reflects 
off a dense material such as a wall. 

 

The reflected pulse is said to undergo a phase change of 180° or  
radians.  The reflected pulse is 180° out of phase with the incident 
pulse.  If these two pulses were to meet they would momentarily 
cancel as they passed one another. 
 
There is a similar phase change when a light wave is reflected off a 
sheet of glass. 

 

In general for light there is a phase change of  on reflection at an interface where there is an 
increase in optical density, e.g. a higher refractive index such as light going from air to glass.  
There is no phase change on reflection where there is a decrease in optical density, e.g. a lower 
refractive index such as light going from glass to air. 
 
 

Thin parallel sided film 
 
Interference by division of amplitude can be produced by thin films as shown below. 
 

 
 
Notice that an extended source can be used.  The amplitude of the beam is divided by reflection 
and transmission at D1, and again by reflection and transmission at D2 at the back of the glass 
sheet.   
 
An eye, at A, will focus the reflected beams and an eye at B will focus the transmitted beams.  
Thus interference patterns can be observed in both the reflected and transmitted beams. 
 



AH Physics: Waves 19  

Condition for maxima and minima in the fringes formed in a thin film 
 
The following explanations are for light incident normally on a thin film or sheet of glass.  The 
diagrams only show light paths at an angle to distinguish clearly the different paths. 
 
Reflected light 
 

 
The ray following path 1 reflects off the glass which has a higher refractive index than air.  It 

therefore experiences a  phase change. 
 
The ray following path 2 reflects off air so experiences no phase change on reflection.  However, it 
travels through the glass twice so has an optical path difference compared to ray 1 of 2nt, where n 
is the refractive index of the glass. 
 
Therefore for constructive interference for the reflected light, i.e. for rays 1 and 2 to be in phase, 

then the optical path difference 2nt must give a  phase change.  Therefore: 

2nt = (m + ½)  where m is an integer. 
 
For constructive interference for the reflected light, i.e. for rays 1 and 2 to be exactly out of phase, 
then the optical path difference 2nt must give zero phase change.  Therefore: 

2nt = m  where m is an integer. 
 
 
Transmitted light 
 

 
 
The ray following path 3 passes through the glass with zero phase change. 
 
The ray following path 4 reflects off air twice so experiences no phase change on reflection.  
However, it travels through the glass twice more than path 3 so has an optical path difference 
compared to ray 3 of 2nt, where n is the refractive index of the glass. 
 



AH Physics: Waves 20  

Therefore for constructive interference for the transmitted light, i.e. for rays 3 and 4 to be in phase, 
then the optical path difference 2nt must give zero phase change.  Therefore: 

2nt = m  where m is an integer. 
 
For constructive interference for the transmitted light, i.e. for rays 3 and 4 to be exactly out of 

phase, then the optical path difference 2nt must give a  phase change.  Therefore: 

2nt = (m + ½)   where m is an integer. 
 
 
Note 
For a certain thickness of thin film the conditions are such that the reflected light and transmitted 
light have opposite types of interference.  Therefore energy is conserved at all times. 
 
 
 
Example 

A sheet of mica is 4.80 m thick.  Light of wavelength 512 nm is shone onto the mica.  When 
viewed from above, will there be constructive, destructive, or partial destructive interference?  The 
refractive index of mica is 1.60 for light of this wavelength.   
 
 
Solution 

For destructive interference  2nt =   m 

 2 × 1.60 × 4.80 × 10−6   =   m × 512 × 10−9 
 m =   30 
 
This is an integer.  Hence destructive interference is observed. 
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Wedge Fringes 
 
Two glass slides are arranged as shown below. 
Division of amplitude takes place at the lower surface of the top glass slide. 
 

 
 
When viewed from above the optical path difference  =  2t  

There is a phase difference of  on reflection at p.  Hence the condition for a dark fringe is   2t = 

m   assuming an air wedge. 
 

For the next dark fringe  t  increases by  


2
    (see right hand sketch above). 

Thus the spacing of fringes, x, is such that  tan    


2 x
 


giving  

x  =  

2 tan

   

 
 
For a wedge of length L and spacing D 

  tan   =  
D
L

. 

 

 



The fringe spacing is 
given by

x  =  
L
2 D

 
 

where is the wavelength of light in air.



In practice the distance across a number of fringes is measured and x determined.   
 
Notice that the fringes are formed inside the wedge, and that the two reflected rays are diverging.  
The eye, or a microscope, must be focussed between the plates for viewing the fringes. 
 
A wedge can be formed by two microscope slides in contact at one end and separated by a human 
hair or ultra thin foil at the other end.  In this way the diameter of a human hair can be measured. 
 
Similarly, if a crystal is placed at the edge and heated, the thermal expansion can be measured by 
counting the fringes as the pattern changes. 
 
  

 

 L 

D 
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Non-reflecting Coating 
 
Good quality lenses in a camera reflect very little light and appear dark or slightly purple.  A thin 
coating of a fluoride salt such as magnesium fluoride on the surface of the lens allows the majority 
of the light falling on the lens to pass through. 
 

The refractive index, n, of the coating is chosen 
such that 1 < n < nglass. 
 
 

Notice that there is a phase change of  at both the 
first and second surfaces. 
 
For cancellation of reflected light:  

optical path difference  =  


2
  . 

 
Optical path in fluoride = 2nd thus      

 2nd = 


2
  and 

 

d = 


n
  

 
Complete cancellation is for one particular wavelength only.  Partial cancellation occurs for other 
wavelengths.   
The wavelength chosen for complete cancellation is in the yellow/green (i.e. middle) of the 
spectrum.  This is why the lens may look purple because the reflected light has no yellow present.  
The red and blue light are partially reflected to produce the purple colour observed.  
 
 

Colours in thin films 
 
When a soap film is held vertically in a ring and is illuminated with monochromatic light it initially 
appears coloured all over.  However when the soap drains downwards a wedge shaped film is 
produced, with the top thinner than the bottom.  Thus horizontal bright and dark fringes appear.  
When illuminated by white light, colours are formed at positions where the thickness of the film is 
such that constructive interference takes place for that particular colour.  Just before the soap film 
breaks, the top appears black because the film is so thin there is virtually no path difference in the 
soap.  Destructive interference occurs because of the phase change on reflection. 
 
Similar colours are observed when a thin film of oil is formed on water. 
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Interference - Division of Wavefront 
 
Division of Wavefront 
 
When light from a single point source is incident on two small slits, two coherent beams of light can 
be produced.  Each slit acts as a secondary source due to diffraction.   
 

If an extended source is used, each part of the wavefront will be incident on the slit at a different 
angle.  Each part of the source will then produce a fringe pattern, but slightly displaced.  When the 
intensity of all the patterns is summed the overall interference pattern may be lost.  However a line 
source parallel to the slits is an exception. 
 

Compare this with the use of an extended source in ‘division of amplitude’. 
 
 

Young's Slits Experiment 
 
The diagram below shows light from a single source of monochromatic light incident on a double 
slit.  The light diffracts at each slit and the overlapping diffraction patterns produce interference. 

 

Q 
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D 

O 
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x 
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A bright fringe is observed at P.  Angle PMO is .  

N is a point on BP such that NP = AP.  Since P is the first bright fringe BN =   

For small values of  AN cuts MP at almost 900 giving angle MAQ = and hence angle. 

Again providing  is very small, sin  = tan  =  in radians  

From triangle BAN:  = 

d

   also from triangle PMO:  =  
x

D
   


 

 Thus   
x

D
   


=   

d
 


 or  x  = 

D
d

  

Giving the fringe separation between adjacent fringes x 
 

x  =  
D
d

 

 
Note  

This formula only applies if x<<D, which gives  small.  This is likely to be true for light waves but 
not for microwaves.   
 
The position of the fringes is dependent on the wavelength.  Thus if white light is used we can 
expect overlapping colours either side of a central white maximum.  The red, with the longer 

wavelength, will be the furthest from this white maximum (xred > xviolet since red > violet). 
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Polarisation 
 

Polarised and unpolarised waves 
 
Light is a wave motion, and is part of the electromagnetic spectrum.  In all electromagnetic waves 
the electric field and magnetic field vary.   The diagram below shows a 3-dimensional picture of 
such a wave. 

 
 
The above diagram shows the variation of the electric field strength, E, in the x-y plane and the 
variation of the magnetic induction, B, in the x-z plane.  In this example the electric field strength is 
only in one plane.  The wave is said to be plane polarised, or linearly polarised.  For example, in 
Britain this is the way that T.V. waves are transmitted.  Aerials are designed and oriented to pick 
up the vertical electric field strength vibrations.  These vibrations contain the information decoded 
by the electronic systems in the television. 
 
Notice that the electromagnetic wave is made up of two mutually perpendicular transverse waves. 
The oscillations of E and B. 
 
Light from an ordinary filament lamp is made up of many separate electromagnetic waves 
produced by the random electron transitions in the atoms of the source.  So unlike the directional 
T.V waves, light waves from a lamp consist of many random vibrations.  This is called an 
unpolarised wave. 
 
When looking at an unpolarised wave coming towards you the direction of the electric field 
strength vector would appear to be vibrating in all direction, as shown in the diagram (i) on the left 
below.  The magnetic induction vector would be perpendicular to the electric field strength vector, 
hence this too would be vibrating in all directions   However when discussing polarisation we refer 
to the electric field strength vector only. 
 
All the individual electric field strength vectors could be resolved in two mutually perpendicular 
direction to give the other representation of a unpolarised wave, as shown below in the centre 
diagram (ii). 
 
 
 
 
 
 
 
 
 
 
The right hand diagram (iii)  above represents a polarised wave. 
 

Longitudinal and transverse waves 
Note that only transverse waves can be polarised.  Longitudinal waves, e.g. sound waves, cannot 
be polarised. 
  

(i)  unpolarised wave (ii) unpolarised wave (iii) polarised wave 
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Polarisation using Filters 
 
We can produce a linearly polarised wave if we can somehow absorb the vibrations in all the 
other directions except one. 
 

In 1852 Herapath discovered that a crystal of iodo-quinine sulphate transmitted one plane of 
polarisation, other planes being absorbed.  In 1938 Land produced the material ‘Polaroid’, which 
has a series of parallel long hydrocarbon chains.  Iodine atoms impregnate the long chains 
providing conduction electrons.  Light is only transmitted when the electric field strength vector is 
perpendicular to the chain. 
 

The arrangement below shows a polaroid filter at X producing linearly polarised light.  The polaroid 
at X is called a polariser.  Vibrations of the electric field strength vector at right angles to the axis 
of transmission are absorbed.  

 

 

A second polaroid at Y is placed perpendicular to the first one, as shown above.  This is called an 
analyser.  The analyser absorbs the remaining vibrations because its axis of transmission is at 
right angles to the polariser at X and no light is seen by the eye.  The light between X and Y is 
called linearly or plane polarisation.  
 

These effects also can be demonstrated using microwaves and a metal grid.   

 

T 

R 

metal grid 

 
 

The microwaves emitted by the horn are plane polarised.  In this example the electric field strength 
vector is in the vertical plane.  The waves are absorbed by the rods and re-radiated in all 
directions.  Hence there will be a very low reading on the receiver, R.  When the metal grid is 
rotated through 90o the waves will be transmitted, and the reading on the receiver will rise.  Notice 
that the microwaves are transmitted when the plane of oscillation of the electric field strength 
vector is perpendicular to the direction of the rods. 

 
 

Polarisation by Reflection 
 
Plane polarised waves can be produced naturally by light reflecting from any electrical insulator, 
like glass.  When refraction takes place at a boundary between two transparent materials the 
components of the electric field strength vector parallel to the boundary are largely reflected.  Thus 
reflected light is partially plane polarised. 
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Plane polarisation at the Brewster angle 
 

 
 

Consider a beam of unpolarised light incident on a sheet of smooth glass.  This beam is partially 
reflected and partially refracted.  The angle of incidence is varied and the reflected ray viewed 
through an analyser, as shown above.  It is observed that at a certain angle of incidence  ip  the 

reflected ray is plane polarised.  No light emerges from the analyser at this angle. 
 

The polarising angle  ip  or Brewster’s angle is the angle of incidence which causes the reflected 

light to be linearly polarised.  
 

This effect was first noted by an experimenter called Malus in the early part of the nineteenth 
century.  Later Brewster discovered that at the polarising angle ip the refracted and reflected rays 

are separated by 90°.  

Consider the diagram above, which has this 90° angle marked: 

   n  =  
sin ip
sin r

   

   but   r  =  (90  -  ip)    thus   sin r  =  sin (90  -  ip)  =  cos ip 

   thus   n  =  
sin ip
cos ip

    =  tan ip   

    n  =  tan ip    

 

Example 
Calculate the polarising angle for glycerol, n = 1.47. 

What is the angle of refraction inside the glycerol at the Brewster angle? 
 

Solution 
Using the equation  n  =  tan ip       1.47  =  tan ip     giving ip  =  56o.  

At the Brewster angle, which is the polarising angle,  
  angle of refraction + ip  = 90o    thus angle of refraction = 44o. 

 
 

Reduction of Glare by Polaroid sunglasses 
 
When sunlight is reflected from a horizontal surface, e.g. a smooth lake of water, into the eye, 
eyestrain can occur due to the glare associated with the reflected light.  The intensity of this 
reflected beam can be reduced by wearing polaroid sunglasses.  These act as an analyser and will 
cut out a large part of the reflected polarised light. 

 

 

  



AH Physics: Waves 27  

Data 
 
Common Physical Quantities 
 

QUANTITY SYMBOL VALUE 

Gravitational acceleration g 9.8 m s-2 

Radius of Earth RE 6.4 x 106 m 

Mass of Earth ME 6.0 x 1024 kg 

Mass of Moon MM 7.3 x 1022 kg 

Mean radius of Moon orbit  3.84 x 108 m 

Universal constant of gravitation G 6.67 x 10-11 m3 kg-1 s-2 

Speed of light in vacuum c 3.0 x 108 m s-1 

Speed of sound in air v 3.4 x 102 m s-1 

Mass of electron me 9.11 x 10-31 kg 

Charge on electron  e -1.60 x 10-19 C 

Mass of neutron mn 1.675 x 10-27 kg 

Mass of proton mp 1.673 x 10-27 kg 

Planck’s constant h 6.63 x 10-34 J s 

Permittivity of free space 0 8.85 x 10-12 F m-1 

Permeability of free space 0 4 x 10-7 H m-1 

 

 

Astronomical Data 
 
Planet or 
satellite 

Mass/ 
kg 
 

Density/ 

kg m-3 

Radius/ 
m 

Grav. 
accel./ 

m s-2 

Escape 
velocity/ 

m s-1 

Mean dist 
from Sun/ 
m 

Mean dist 
from 
Earth/ m 

Sun 1.99x 1030 1.41 x 103  7.0 x 108 274  6.2 x 105       -- 1.5 x 1011 

Earth  6.0 x 1024   5.5 x 103  6.4 x 106     9.8 11.3 x 103 1.5 x 1011       -- 

Moon  7.3 x 1022   3.3 x 103  1.7 x 106     1.6   2.4 x 103       -- 3.84 x 108 

Mars  6.4 x 1023   3.9 x 103  3.4 x 106     3.7    5.0 x 103 2.3 x 1011       -- 

Venus  4.9 x 1024   5.3 x 103 6.05 x 106     8.9 10.4 x 103 1.1 x 1011        -- 
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Waves 2.4 
 
Wave Motion 
The Travelling Wave Equation 
Deriving the travelling wave equation 
The Intensity of a Wave 
 
The intensity of a wave is directly proportional to 
the square of its amplitude. 
 

intensity    A2 
 
Longitudinal and transverse waves 
Principle of Superposition of Waveforms  
Phase Difference 
Stationary Waves 
Use of standing waves to measure wavelength 
 
Formula for standing waves 
 


