## Section A

| 1. | C | 11. |
| :--- | :--- | :--- | B

## Section B

```
21.a. Speed is a scalar with magnitude only.
    Velocity is a vector with magnitude and velocity.
    b.i.Distance(1) = Speed x time
                10.0km/h x 0.5h
                        5km
    Distance(2) = 8.0km/h x 1.5
        12km
    Distance(Total) = Distance(1)+Distance(2)
    Distance(Total) = 5km + 12km
    Distance(Total) = 17km
```

b.ii.Draw an accurate scale diagram and take careful measurements


```
or use trigonometry.
```

Use the cosine rule to calculate the resultant displacement.
$s^{2}=x^{2}+y^{2}-2 x y \cos X$
$s^{2}=12^{2}+5^{2}-2 \times 12 \times 5 \cos 110^{\circ}$
$s^{2}=169+41.04$
$\mathrm{s}=\operatorname{SQRT}(210.4)$
$\mathrm{s}=14.49 \mathrm{~km}$
Use the sine rule to calculate angle $X$ and hence the bearing.
s/sins $=x / \sin X$
$\sin X=(x s i n S) / s$
$\sin X=\left(12 \sin 110^{\circ}\right) / 14.49$
$\sin X=(11.28) / 14.49$
$\sin X=0.778$
$X=51.1^{\circ}$
bearing $321.1^{\circ}$
b.iii.velocity = displacement/time
$\mathrm{s}=14.49 \mathrm{~km}$
$\mathrm{v}=14.49 / 2$
$t=2 h$
$v=7.24 \mathrm{~km} / \mathrm{h}$
c. Time for Leeuvin to sail directly:
$t=s / v$
$t=14.49 / 7.5$
$\mathrm{t}=1.932 \mathrm{~h}=1$ hour 55.9 minutes
Time for Leeuvin to reach $Y$ after the Mir passes $X$
1h 55.9min $+15 \mathrm{~min}=2 \mathrm{~h} 10.9 \mathrm{~min}$

This is longer than the 2 journey of the Mir.
Leeuvin reaches $Y 10.9$ minutes after Mir.

```
22.a.i.u = 60m/s }\mp@subsup{v}{}{2}=\mp@subsup{u}{}{2}+2a
    v = 0m/s s = (v2 - u')/2a
    t = 40s
    s=? a = (v-u)/t
        a=(0-60)/40=-1.5m/s/s
        s=(02 - 602)/2x-1.5
        s = -3600/-3
        s}=1200
```

    a.ii. \(\mathrm{F}_{\mathrm{avg}}=\mathrm{m}(\mathrm{v}-\mathrm{u}) / \mathrm{t}\)
    \(m=7.5 \times 10^{5} \mathrm{~kg} \quad \mathrm{~F}_{\mathrm{avg}}=7.5 \times 10^{5}(0-60) / 40\)
    \(u=60 \mathrm{~m} / \mathrm{s} \quad \mathbf{F}_{\mathrm{avg}}=-11.25 \times 10^{5} \mathrm{~N}\)
    \(v=0 \mathrm{~m} / \mathrm{s} \quad\) The force acts in the opposite
    direction
$t=40 \mathrm{~s}$ to the motion.

Kinetic energy equated to the work done by the braking force also produces the above answer.
b. $\quad I_{\text {rms }}=2.5 \times 10^{3} \mathrm{~A}$
$P=8.5 \times 10^{6}(\mathrm{~J} / \mathrm{s})$ or (W)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{V}_{\text {rms }} \\
& \mathrm{V}_{\mathrm{rms}}=\mathrm{P}_{\mathrm{rms}} / I_{\mathrm{rms}} \\
& \mathrm{~V}_{\mathrm{rms}}=8.5 \times 10^{6} / 2.5 \times 10^{3} \\
& \mathrm{~V}_{\mathrm{rms}}=3400 \mathrm{~V}
\end{aligned}
$$

23.a. As the manifold is stationary the upward forces balance the downward forces. Tension = Weight

$\mathrm{w}=\mathrm{mg}$
$\mathrm{w}=5.0 \times 10^{4} \mathrm{~kg} \times 9.8 \mathrm{~N} / \mathrm{kg}$
$\mathrm{w}=490000 \mathrm{~N}$
$T=490000 \mathrm{~N}$ (upwards)
b.i.

b.ii.Again as the manifold is stationary the upward forces balance the downward forces.
$T+B=W$
$2.5 \times 10^{5}+\mathrm{B}=490000 \mathrm{~N}$
$B=490000-250000$
$B=240000 \mathrm{~N}$
The buoyancy force is a result of the pressure difference between the upper and lower surfaces.
$B=\left(P_{\text {lower }}-P_{\text {upper }}\right) A$
$\Delta \mathrm{P}=\mathrm{B} / \mathrm{A}$
$\Delta \mathrm{P}=240000 \mathrm{~N} / 8.0 \mathrm{~m}^{2}$
$\Delta \mathrm{P}=30000 \mathrm{~Pa}$ As required
c. There is no change in the pressure difference.
$P_{\text {liquid }}($ top $)=\rho g h$
$P_{\text {liquid }}($ bottom $)=\rho g(h+\Delta h)$
$\Delta \mathrm{P}=\mathrm{P}_{\text {liquid }}\left(\right.$ bottom) $-\mathrm{P}_{\text {liquid }}($ top $)$
$\Delta \mathrm{P}=\rho g \Delta \mathrm{~h}$


Only the difference in the depth $(\Delta h)$ of the top and bottom surfaces affects the pressure difference.

```
24.a.i.r = 2.0\Omega
    emf = 9.0V (open circuit voltage)
    V tpd }=7.8\textrm{V
```



```
    V lost }=9.0-7.
    V lost }=1.2\textrm{V
    V lost }=\operatorname{Ir
    I = V lost/r
    I = 1.2/2.0
    I = 0.6A
    V tpd }=\mp@subsup{V}{\textrm{R}}{
    VR}=I
    R = VR
    R = 7.8/0.6
    R=13\Omega
```

24.a.ii.When $S_{1}$ is closed there is a current through the internal resistor. The voltage drop across this resistor is "lost" and produces the decreased reading on the voltmeter.
b. The $30 \Omega$ resistor in parallel with the original load resistor decreases the effective resistance of the load. More current therefore flows through the internal resistor resulting in more "lost volts". This means the voltmeter reading decreases.
25.a.


When fully charged the current in the circuit falls to zero and the voltage across the capacitor is equal to the supply voltage.

```
25.bi. I = 20mA
    R = 400\Omega
    VR}=I
    VR}=20\times1\mp@subsup{0}{}{-3}\times40
    VR}=8
    V Supply}= \mp@subsup{V}{R}{}+\mp@subsup{V}{C}{
    V
    VC}=12-
    VC}=4
b.ii. E = 1/2(CV2)
    E = 0.5 x 100\times100-6 x 42
    E = 0.0008J (800\muJ)
c. Reduce the value of the resistor in the circuit
    to less than 400\Omega.
d. The charging time is less. This means the capacitor
    must have a value less than 400\muF
26.a. Differential op-amp
    V out = ( }\mp@subsup{\textrm{R}}{\textrm{f}}{}/\mp@subsup{\textrm{R}}{1}{})(\mp@subsup{\textrm{V}}{2}{}-\mp@subsup{V}{1}{}
    V out }=(120/10)(7.52-7.50
    Vout = 12 x 0.02
    V out = 0.24V
b. As the temperature increases the:
Resistance of the thermistor decreases increasing \(V_{2}\) and \(V_{\text {out }}\). When Vout increases to 0.7 V or above the transistor conducts. The electromagnet in the relay gets magnitised and closes the switch to the alarm.
C. \(V_{\text {out }}=\left(R_{f} / R_{1}\right)\left(V_{2}-V_{1}\right)\)
\(0.72=12\left(V_{2}-7.50\right)\)
\(\mathrm{V}_{2}=(0.72 / 12)+7.50\)
```

$\mathrm{V}_{2}=0.06+7.50$
$\mathrm{V}_{2}=7.56 \mathrm{~V}$
This corresponds to a temperature of $36^{\circ} \mathrm{C}$

```
27.a.i.Angle air = 82`
    Angle liquid = 450
    n}\mp@subsup{n}{1iquid(red)}{}=\operatorname{sin}(air)/sin(liquid
    n
    n
    n
```

    a.ii. The angle of refraction for blue light is greater.
    \(\sin \theta_{\text {air }}=n s i n \theta_{\text {liquid }}\)
    \(\theta_{\text {air }}=\sin ^{-1}\left(\right.\) nsin \(\left.\theta_{\text {liquid }}\right)\)
    As \(\mathrm{n}_{\text {liquid (blue) }}>{ }_{\text {liquid (red) }} \theta_{\text {air }}\) must be greater.
    Note: \(\theta_{\text {air }}\) is the angle of refraction.
    b. \(\quad \theta_{\text {critical }}=\sin ^{-1}(1 / n)\)
    \(\theta_{\text {critical }}=\sin ^{-1}(1 / 1.44)\)
    \(\theta_{\text {critical }}=\sin ^{-1}(0.694)\)
    \(\theta_{\text {critical }}=43.9^{\circ}\)
    This means that light incident at \(45^{\circ}\) will be totally
    internally reflected.
    
28.a.i.A passing photon can encourage or stimulate an electron to fall from a higher energy level in an atom to a lower one. This will happen if the passing photon has the same energy as the energy gap between the two energy levels in the atom.
a.ii.Amplification is produced because each photon produced by stimulated emission becomes a new stimulating photon. One
becomes two, two becomes four, four becomes eight and so on.
b. Grating Equation : $d \sin \theta=n \lambda$
$\mathrm{d}=? \mathrm{~m}$
$\mathrm{n}=1$
$\theta=37 / 2^{\circ}=18.5^{\circ}$
$\lambda=633 \mathrm{~nm}=633 \mathrm{x} 10^{-9} \mathrm{~m}$
$d=n \lambda / \sin \theta$
$d=1 \times 633 \times 10^{-9} / \sin 18.5^{\circ}$
$d=1.995 \times 10^{-6} \mathrm{~m}$

Lines per metre $=1 / d$
Lines per metre $=1 / 1.995 \times 10^{-6}$
Lines per metre $=501271$
C. The wavelength has been decreased. Shorter wavelengths are diffracted less than longer ones so the maxima are closer together.
29.a.


Forward biased p-n junction
b. In forward bias the junction conducts if the applied voltage is high enough. Higher energy electrons flowing from the $n$-type material fall into holes, at a lower energy level, in the p-type material. The electrons give up energy in the form of photons as they do this.
c.i. $E=3.68 \times 10^{-19} \mathrm{~J}$
$\mathrm{E}=\mathrm{hf}$
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
$\mathrm{f}=\mathrm{E} / \mathrm{h}$
$\mathrm{f}=3.68 \times 10^{-19} / 6.63 \times 10^{-34}$
$\mathrm{f}=5.55 \times 10^{14} \mathrm{~Hz}$
$\lambda=\mathrm{v} / \mathrm{f}$
$\lambda=3 \times 10^{8} / 5.55 \times 10^{14}$
$\lambda=540 \mathrm{~nm}$

$$
\text { ii. } \begin{aligned}
\mathrm{E} & =3.68 \times 10^{-19} \mathrm{~J} \\
\mathrm{q} & =1.60 \times 10^{-19} \mathrm{C} \\
\mathrm{~V} & =
\end{aligned}
$$

$E=q V$
$V=E / q$
$V=3.68 \times 10^{-19} / 1.60 \times 10^{-19}$
$\mathrm{V}=2.3 \mathrm{~V}$
30.a.i. 92 is the atomic number. The number of protons in the uranium nucleus.
a.ii. 235 is the mass number. The number of protons plus neutrons in the uranium nucleus.
b. The two neutrons produced in the fission reaction can be absorbed by two other uranium nuclei and produce two more fissions.
c. Total mass before $=(390.173+1.675) \times 10^{-27}$

$$
=391.848 \times 10^{-27} \mathrm{~kg}
$$

Total mass after $=(232.242+155.884+2 \times 1.675) \times 10^{-27}$ $391.476 \times 10^{-27} \mathrm{~kg}$

Mass defect $(\Delta \mathrm{m})=(391.848-391.476) \times 10^{-27}$ $=0.372 \times 10^{-27} \mathrm{~kg}$
$\mathrm{E}=\Delta \mathrm{mc}^{2}$
$E=0.372 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
$E=33.48 \times 10^{-12} \mathrm{~J}$

