

Semiconductors

- 1. Using band theory, draw a diagram to show the difference between conductors and insulators. Your diagram should show the conduction band, the valence band and the gap between for both types of material.
- 2. In the following descriptions of energy levels in metals, insulators and semiconductors some words and phrases have been replaced by the letters A to N.

In a metal the _____A____ band is completely filled and the _____B____ band is partially filled. The electrons in the _____C____ band are free to move under the action of _____D____ so the metal has a _____E____ conductivity.

In an insulator there are no free electrons in the ____F___ band. The energy gap between the two bands is large and there is not enough energy at room temperature to move electrons from the ____G___ band into the ____H___ band. Insulators have a very ____I___ conductivity.

In a pure semiconductor the energy gap between the valence and conduction bands is ____J___ than in a metal. At room temperature there is enough energy to move some electrons from the ____K___ band into the ____L__ band. As the temperature is increased the number of electrons in the conduction band ____M___ so the conductivity of the semiconductor ____N___.

From the table below choose the correct words or phrases to replace the letters.

Letter	List of replacement word or phrase
A, B, C, F, G, H, K, L	conduction, valence
D	an electric field, a magnetic field
E, I	low, high
J	bigger, smaller
M, N	decreases, increases

- 3. The conductivity of a semiconductor material can be increased by a process called 'doping'.
 - (a) Explain what is meant by the conductivity of a material.
 - (b) Explain, giving an example, what is meant by 'doping' a semiconductor.
 - (c) Why does 'doping' decrease the resistance of a semiconductor material?

- 4. (a) If germanium (4 electrons in the outer shell) is doped with phosphorus (5 electrons in the outer shell), what kind of semi-conductor is formed ?
 - (b) How can a doped semiconductor of either type still have a neutral overall charge ?

P-N Junctions

5. A p-n junction diode is connected across a d.c. supply as shown.

- (a) Is the diode connected in forward or reverse bias?
- (b) Describe the movement of both majority charge carriers across the p-n junction ?
- (c) What kind of charge is the only one that actually moves across the junction ?
- 6. When positive and negative charge carriers recombine at the junction of ordinary diodes and LEDs, quanta of radiation are emitted from the junction.
 - (a) Does the junction have to be forward biased or reverse biased for radiation to be emitted?
 - (b) What form does this emitted energy take when emitted by:
 - (i) an LED
 - (ii) an ordinary junction diode?
- 7. An LED is rated as follows:

operating p.d. 1.8 V, forward current 20 mA

- (a) The LED is to be operated from a 6 V d.c. power supply. Draw a circuit diagram of the circuit, including a protective resistor, which allows the LED to operate at its rated voltage.
- (b) Calculate the resistance of the protective resistor that allows the LED to operate at its rated voltage.
- 8. The diagram opposite shows a photodiode connected to a voltmeter.
 - (a) State the mode that the photodiode is operating in.
 - (b) Explain how an e.m.f. is created across the junction when light is incident on it.
 - (c) Explain why increasing the light intensity incident on the photodiode increases the e.m.f. produced.

