Unit 3: ELECTRICITY

Capacitance

Charging and Discharging

1. The diagram shows a 12 V battery connected to a 2200 μF capacitor and a 3300 Ω resistor in series.

- (a) Sketch graphs to show how (i) the p.d. across the capacitor and (ii) the current in the resistor vary once the switch S is closed.
- (b) What is the p.d. across the capacitor (i) immediately after the switch is closed and (ii) once the capacitor is fully charged?
- (c) Calculate the current flowing in the resistor immediately after the switch is closed.
- 2. A 1.5 V cell is connected to a 470 μ F capacitor and a 10 k Ω resistor in series.
 - (a) Sketch a graph to show the variation of the p.d. across the capacitor during charging. Label this graph **A**.
 - (b) On the same axes sketch a possible graph of p.d. against time if a 220 μ F is used in place of the 470 μ F capacitor. Label this graph **B**.
 - (c) Now sketch the graph of p.d. against time which could be obtained using a 470 μF capacitor and a 33 k Ω resistor. Label this graph ${\bf C}$.

3. A 1.5 V cell is connected as shown to a 200 Ω resistor and a 5000 μ F capacitor in series. What is the initial charging current?

Unit 3: ELECTRICITY

Capacitance

4. A 100 μF capacitor is charged using a 12 V battery as shown.

- (a) Sketch a graph of p.d. against time.
- (b) On the same axes sketch the graph which would be obtained if a 9V battery were used in place of the 12V battery.
- 5. A capacitor is charged to a potential difference of 24 V and then discharged through a 600 Ω resistor. What is the initial discharging current?
- 6. A capacitor is connected directly to a 9.0 V battery and then discharged through a resistor. If the initial discharging current is 15 mA, what is the value of the resistance?
- 7. A capacitor is connected in series with a 200 Ω resistor and charged using a 24 V supply.
 - (a) What is the initial charging current.
 - (b) When the capacitor is partly charged the p.d. across it is found to be 15 V.
 - (i) What is the current now?
 - (ii) What is the p.d. across the resistor?
- 8. Part of a camera flash circuit operates at 250 V d.c. as shown below. The capacitor is initially uncharged.

- (a) The capacitor is now charged by connecting the switch to X.
 - (i) Calculate the initial charging current.
 - (ii) Sketch a graph to show how the voltage across the capacitor varies with time from the moment the switch is connected to X. Numerical values are required on the voltage axis.
- (b) The time for the capacitor to charge in a camera flash is known as the recycle time. How could the circuit be modified to reduce the recycle time without altering the power output of the flash?

Unit 3: ELECTRICITY

Capacitance

9. A student sets up the circuit shown to investigate the charging of a capacitor.

Initially the capacitor is uncharged and the variable resistor R_V is set to 12 k Ω .

- (a) Switch S is now closed and the capacitor charges.
 - Sketch a graph of the current in the circuit from the time the switch is closed until the capacitor is fully charged.
 - Numerical values are only required on the current axis.
- (b) Capacitors have an insulator between their plates.

 Explain why there is a current in the circuit during the charging process.
- (c) Switch S is now opened and the capacitor is fully discharged. The variable resistor is adjusted to a greater resistance.
 - Switch S is closed and the capacitor charges again.
 - Explain what effect, if any, this increase in resistance has on:
 - (i) The maximum potential difference across the capacitor;
 - (ii) The maximum current in the circuit.

Q = VC

- 10. What is the capacitance of a capacitor which stores 50 mC of charge when connected to a 1.5 V cell?
- 11. How much charge is stored by a 2200 μF capacitor connected to a 12 V battery?
- 12. A 470 μ F capacitor stores 500 μ C of charge. What is the p.d. across the capacitor plates?

Unit 3: ELECTRICITY

Capacitance

- 13. How much charge is stored by each of the following capacitors?
 - (a) a 20 μF capacitor charged to a voltage of 1.5V
 - (b) a 4 μ F capacitor charged to a voltage of 400 V
 - (c) a 2200 µF capacitor charged to a voltage of 12 V
 - (d) a 500 pF capacitor charged to a voltage of 9.0 V
 - (e) a 20 pF capacitor charged to a voltage of 24 V
- 14. Find the capacitance of each of the following capacitors
 - (a) a capacitor which stores 12 mC of charge when the p.d. is 150 V

(b) "	u	u	1.5 mC	u	u	u	6.0 V
(c) "	u	u	3.6 C	u	u	u	24 kV
(d) "	u	"	120 μC	u	u	u	12 V
(e) "	u	u	50 μC	u	u	u	25 kV

- 15. What is the potential difference across each of the following capacitors?
 - (a) a 10 000 µF capacitor storing 50 mC of charge
 - (b) a 220 μF " 10 μC "
 - (c) a $0.01 \, \mu F$ " 500 mC " "
 - (d) a 240 pF " " 12 mC " "
- 16. Part of a circuit in an electronic timer consists of a 1.6 mF capacitor and an 18 k Ω resistor connected to a switch and a 4.5 V supply.

- (a) Calculate the charge on the capacitor when it is fully charged.
- (b) Sketch the graph of current in the resistor against time as the capacitor charges. Numerical values are required on the current axis.

Unit 3 : ELECTRICITY Capacitance

Energy Stored

- 17. How much energy is stored by a capacitor which holds 50 mC of charge at a p.d. of 12 V?
- 18. A capacitor stores 25 mJ of energy when it is charged to a p.d. of 100 V. What is the charge on the capacitor?
- 19. If a capacitor stores 0.04 J of energy when holding 200 mC of charge, what is the p.d.?
- 20. Find the energy stored in each of the capacitors of Questions 13, 14 and 15.
- 21. Find the potential difference required in each of the following cases
 - (a) a 1000 μF capacitor storing 0.50 J of energy.
 - (b) a 220 μF capacitor storing 4.0 J of energy
- 22. What value of capacitor would be required to store 400 mJ of energy at a potential difference of 12 V?
- 23. What value of capacitor would be required to store 720 mJ of energy when holding 60 mC of charge?
- 24. Find the charge stored in each of the following
 - (a) a 470 μF capacitor storing 50 mJ of energy.
 - (b) a 5000 μ F capacitor storing 10 J of energy.