OUR DYNAMIC UNIVERSE

Gravitation

Projectiles

- 1. A stone is dropped down a deep well and strikes the water 3.0 s later.
 - (a) How deep is the well?
 - (b) At what speed does the stone enter the water?
- 2. A teacher throws his pay cheque, wrapped around a stone, from the Kingston Bridge. If the initial velocity of the stone is 15 ms⁻¹ and it takes 2.5 s to reach the water, what is the height of the bridge?
- 3. A stone dropped from the top of a cliff reaches the sea travelling at 25 ms⁻¹. What is the height of the cliff?
- 4. A stone, thrown vertically downwards from the top of another cliff at 5 ms⁻¹, reaches the sea travelling at 35 ms⁻¹.
 - (a) What is the height of the cliff?
 - (b) What is the time of flight?
- 5. Yet another stone is thrown vertically down a well at 5 ms⁻¹.
 - (a) Calculate the speed of the stone as it reaches the water surface 60 m below.
 - (b) How long does it take for the stone to reach the water?
- 6. An arrow is fired vertically upwards at 40 ms⁻¹.
 - (a) How long does it take to reach its maximum height?
 - (b) What is the maximum height?
- 7. At what vertical speed should an arrow be fired in order to reach a height of 180 m?

In an experiment to find the acceleration due to gravity (see the apparatus opposite) a steel ball falls from rest through 40 cm.

The time taken is 0.29 s.

What is the value for the acceleration due to gravity?

- 9. A marble is thrown vertically upwards at 20 ms⁻¹ from the edge of a 105 m high cliff and eventually lands in the sea at the foot of the cliff.
 - (a) What is the speed of the marble when it lands in the sea?
 - (b) How long does the marble take to reach the cliff foot?
 - (c) What is the maximum height above the sea reached by the marble?

OUR DYNAMIC UNIVERSE Gravitation

10. A ball is thrown upwards from the side of a cliff as shown below.

- (a) Calculate:
- i) the height of the ball above sea level after 2 s
- ii) the ball's velocity after 2 s.
- (b) What is the total distance travelled by the ball from launch to landing in the sea?
- 11. A helicopter is rising vertically at a steady speed of 5.0 ms⁻¹ when James Bond drops from it. He reaches the ground 2.0 s later.
 - (a) What is his speed when he reaches the ground?
 - (b) What is the height of the helicopter when he jumps?
 - (c) What is his maximum height above the ground?
- 12. A Darth Vader hot air balloon rises vertically at a steady speed. When it is 80 m above the ground, an object is released. If the object hits the ground 5 s later, calculate the rising speed of the balloon.

- 13. A stone is thrown horizontally from the top of a cliff at 40 ms⁻¹ and lands in the sea 3.0 s later.
 - (a) How far from the foot of the cliff does it land?
 - (b) What is the height of the cliff?
- 14. A projectile is fired horizontally from the edge of a cliff at 12 ms⁻¹ and hits the sea 60 m away.
 - Find: (a) the time of flight
 - (b) the height of the starting point above sea level.
- 15. A car drives over the edge of a 125 m high cliff and lands in the sea 75 m from the cliff foot.
 - (a) How long does the car take to land?
 - (b) How fast is the car travelling when it goes over the edge?

OUR DYNAMIC UNIVERSE

Gravitation

- 16. In question 15, at the instant the car hits the sea, what is
 - (a) the horizontal component of the cars velocity
 - (b) the vertical velocity
 - (c) the resultant velocity of the car (magnitude and direction)?
- 17. A box is released from a plane travelling with a horizontal velocity of 300 ms⁻¹ and a height of 300 m, find :
 - (a) how long it takes the box to hit the ground
 - (b) the horizontal distance between the point of impact and the release point
 - (c) the position of the plane relative to the box at the time of impact.
- 18. A rifle is aimed directly at a target which is a horizontal distance of 120 m away.
 - (a) Explain why the bullet does not the strike the target (you may use a sketch).
 - (b) If the bullet velocity is 240 ms⁻¹, by what vertical distance does it miss the target?
- 19. A ball is projected horizontally at 15 ms⁻¹ from the top of a vertical cliff. It reaches the ground 45 m from the foot of the cliff.
 - (a) Draw graphs, giving appropriate numerical values of the balls
 - i) horizontal speed against time
 - ii) vertical speed against time, for the period between projection until it hits the ground.
 - (b) Use a vector diagram, to find the resultant velocity (magnitude and direction) of the ball 2 s after its projection.
- 20. A stunt driver hopes to jump across a canal of width 10 m.

The drop to the other side is 2 m as shown.

- (a) Calculate the horizontal speed required to make it to the other side
- (b) State any assumptions you have made.

OUR DYNAMIC UNIVERSE

Gravitation

21. A projectile is fired across level ground taking 6 s to travel from A to B. The highest point reached is C. Air resistance is negligible.

Velocity - time graphs for the flight are shown below.

- (a) Describe:
 - i) the horizontal motion of the projectile
 - ii) the vertical motion of the projectile?
- (b) Use a vector diagram, to find the velocity (including the angle) at which the projectile was fired from point A.
- (c) Find the velocity at position C. Explain why this is the smallest velocity of the projectile.
- (d) Calculate the height of the projectile at point C.
- (e) Find the range AB.
- 22. A cannon fires a shell at a target which is a horizontal distance of 7.2 km away. The shell emerges from the muzzle with a horizontal velocity of 120 ms⁻¹ and an unknown vertical velocity.
 - (a) How long does the shell take to reach the target?
 - (b) What is the initial vertical velocity of the shell?
- 23. A projectile has an initial horizontal velocity of 60 ms⁻¹ and an initial vertical velocity of 80 ms⁻¹.
 - (a) What is the time of flight of the projectile?
 - (b) What is the horizontal distance travelled?
 - (c) What is the maximum height reached?
- 24. A shell is fired with initial horizontal and vertical components of 100 ms⁻¹ and 40 ms⁻¹ respectively. At a distance of 600 m from the cannon is a building which is 55 m high. Does the shell clear the building and, if so, by how much?
- 25. A shell emerges from the muzzle of a gun at a velocity of 240 ms $^{-1}$ and at an angle of 30 $^{\circ}$ above the horizontal. What are the initial horizontal and vertical components of the velocity?

OUR DYNAMIC UNIVERSE

Gravitation

- 26. A projectile is launched with an initial velocity of 100 ms $^{-1}$ at an angle of 30 $^{\circ}$ above the horizontal. Find
 - (a) the initial horizontal and vertical components of the velocity
 - (b) the time of flight
 - (c) the horizontal range.
- 27. An object of mass 5 kg is propelled with a speed of 40 ms⁻¹ at an angle of 30 ° to the horizontal.

Find:

- (a) the initial horizontal and vertical components of the velocity
- (b) the maximum height reached
- (c) the time of flight for the whole trajectory
- (d) the horizontal range of the object.
- 28. A bullet leaves the barrel of a gun travelling at 240 ms⁻¹. What is the range of the bullet if the angle of elevation of the gun is
 - (i) 45°
- (ii) 60°
- 29. A projectile is launched with an initial velocity of 130 ms⁻¹ and reaches a maximum height of 125 m. Find :
 - (a) the initial vertical component of the velocity
 - (b) the initial horizontal component of the velocity
 - (c) the angle of projection
 - (d) the range.
- 30. A missile is launched at 60° to the ground and strikes a target on a hill as shown below.

If the initial speed of the missile was 100 ms⁻¹ find:

- (a) the time taken to reach the target
- (b) the height of the target above the launcher.

Higher Grade Physics OUR DYNAMIC UNIVERSE Gravitation

31. Explain why a satellite that is travelling at a constant speed is accelerating.

Gravity and Mass

- 32. State the inverse square law of gravitation.
- 33. Show that the force of attraction between two large ships, each of mass 5.00×10^7 kg and separated by a distance of 20 m, is 417 N.
- 34. Calculate the gravitational force between two cars parked 0·50 m apart. The mass of each car is 1000 kg.
- 35. In a hydrogen atom an electron orbits a proton in a circle with a radius of 5.30×10^{-11} m. The mass of an electron is 9.11×10^{-31} kg and the mass of a proton is 1.67×10^{-27} kg. Calculate the gravitational force of attraction between the proton and the electron in a hydrogen atom.
- 36. The distance between the Earth and the Sun is 1.50×10^{11} m. The mass of the Earth is 5.98×10^{24} kg and the mass of the Sun is 1.99×10^{30} kg. Calculate the gravitational force between the Earth and the Sun.
- 37. Two protons exert a gravitational force of $1\cdot16\times10^{-35}$ N on each other. The mass of a proton is $1\cdot67\times10^{-27}$ kg. Calculate the distance separating the protons.