S2 Physics TELECOMMUNICATIONS

Study Guide

Waves

At the	and	of the	section	l can
AL INC	ena	or me	section	ı Can :

1	give an example which illustrates that the speed of sound in air is less than the speed of light in air, eg thunder and lightning
2	describe a method of measuring the speed of sound in air (using the relationship between distance, time and speed)
3	carry out calculations involving the relationship between distance, time and speed in problems on sound transmission
4	state that waves are one way of transmitting signals
5	use the following terms correctly in context: wave, frequency, wavelength, speed, energy (transfer), amplitude
6	carry out calculations involving the relationship between distance, time and speed in problems on water waves
7	carry out calculations involving the relationship between speed, wavelength and frequency for water and sound waves.

S2 Physics TELECOMMUNICATIONS

Study Guide

Communication Using Cables

At the end of the section I can: 1 describe a method of sending a message using code. 2 state that coded messages or signals are sent out by a transmitter and are picked up by a receiver. state that the telephone is an example of long range communication between 3 transmitter and receiver. 4 state the energy changes a) in a microphone (sound to electrical) b) in a loud speaker (electrical to sound). 5 state that the mouthpiece of a telephone (transmitter) contains a microphone and the earpiece (receiver) contains an earphone (loudspeaker). 6 state that electrical signals can be transmitted along wires during telephone communication 7 explain the electrical signal pattern in telephone wires in terms of loudness and frequency changes in the sound signal 8 state that an electrical signal is transmitted along a wire at a speed >> speed of sound (almost 300 000 000 m/s) 9 describe the effect on the signal pattern displayed on an oscilloscope due to a change in a) loudness of sound b) frequency of sound 10 describe, with examples, how the following terms relate to sound: frequency and amplitude

S2 Physics TELECOMMUNICATIONS Study Guide

Optical Fibres

At the end of the section I can:

1	state what is meant by an optical fibre
2	state that optical fibres are used in telecommunication systems
3	state that optical fibres transmit light signals
4	state that signal transmission along an optical fibre takes place at a very high speed (nearly 200 milllion metres per second)
5	describe the transmission of the light signal along an optical fibre
6	describe one advantage and one disadvantage of using optical fibres for transmission of signals

S2 Physics TELECOMMUNICATIONS

Study Guide

Radio and Television

At the end of the section I can:

1	state that mobile telephones, radio and television are examples of long range communication which do not need cables (between transmitter and receiver)
2	state that radio signals, television signals and microwaves are waves which transfer energy
3	state that radio waves, television waves and microwaves are transmitted through the air at 300 000 000 m/s
4	state that the main parts of a radio receiver are: aerial, tuner, decoder, amplifier, loudspeaker, electricity supply; and identify these parts on a block diagram
5	describe in a radio receiver the function of the aerial, tuner, decoder, amplifier, loudspeaker and electricity supply
6	state that the main parts of a television receiver are: aerial, tuner, decoders, amplifiers, screen, loudspeaker, electricity supply; and identify these parts on a block diagram of a television receiver
7	describe in a television receiver the function of: aerial, tuner, decoders, amplifiers, screen, loudspeaker, electricity supply
8	state that mixing red, green and blue lights produces all colours seen on a colour television screen
9	state that both radio and television stations can be identified by the frequency of the signal they transmit

S2 Physics TELECOMMUNICATIONS Study Guide

Satellites

At the end of the section you should be able to:

1	Describe how satellites are used in telecommunication
2	State that a geostationary satellite stays above the same point on the Earth's surface
3	State that curved reflectors on receiving aerials make the signal stronger
4	Explain why curved reflectors on receiving aerials make the signal stronger

S2 Physics TELECOMMUNICATIONS Study Guide

Skills

At the end of the topic I will be able to:

- Demonstrate that I can carry out practical work in a safe and logical manner.
- 2 Work as part of a team to successfully complete tasks that we are set.
- 3 Form valid conclusions and evaluate my work using my knowledge of Physics.
- 2 4 Use my notes and study guide in order to fully prepare for an assessment.