3.1 Generation of Energy

1	State that electricity can be generated by different means.
2	Decide whether sources of energy are renewable or non-renewable.
3	State that fossil fuels are at present the main sources of energy.
4	State that the reserves of fossil fuels are finite.
5	State that the burning of fossil fuels produces greenhouse gases.
6	State the advantages and disadvantages of using nuclear power for the generation of electricity.
7	Explain the advantages and disadvantages of at least three renewable energy sources.
8	State that energy efficiency must be considered if energy is to be conserved.
9	Describe energy efficiency issues in generation distribution appliances
10	State that a transformer reduces power losses in electricity distribution.
11	State the main parts of a transformer; iron core, primary coil and secondary coil.

3.2 Electrical Power

- □ 1 State the relationship between energy and power.
- $\Box \quad 2 \quad \text{Carry out calculations using E} = \text{Pt.}$
- **3** Investigate and compare the power ratings of various electrical appliances.
- **D** 4 Describe energy savings (efficiency) in the home.
- □ 5 Carry out calculations involving the relationship between efficiency, energy output and energy input..
- □ 6 Carry out calculations involving the relationship between efficiency, power output and power input.

3.3 Electromagnetism

1	State that a magnetic field exists around a current-carrying wire.
2	Give examples of practical applications of magnets and electromagnets.
3	Describe the parts of a basic electromagnet.
4	State that a current carrying wire experiences a force when the wire is in a magnetic field.
5	Identify on a simple diagram of an electric motor, the rotating coil, the field coil (magnet), the brushes and the commutator .
6	State that a voltage may be induced when a coil of wire is moved within a magnetic field.
7	State that the size of an induced voltage depends on; the strength of the magnetic field, the number of coils of wire and the speed of movement.

3.4 Electrical & Electronic Circuits

1	State that electrons are free to move in a conductor.
2	Describe an electric current in terms of movement of charge around a circuit.
3	State that the voltage of a supply is a measure of the energy given to the charges in a circuit.
4	Use the units ampere (amps) and volts correctly.
5	State that an ammeter is used to measure current and a voltmeter is used to measure voltage.
6	Draw and identify the circuit symbols for each of the following :-cell, battery, lamp, switch, resistor, variable resistor, voltmeter, ammeter, thermistor, LDR.
7	Draw circuit diagrams to show the correct positions of an ammeter and voltmeter in a circuit.
8	Describe a series circuit.
9	State that in a series circuit the current is the same at all positions.
10	State that the sum of the voltages across the components in series is equal to the voltage of the supply.
11	Describe a parallel circuit.
12	State that the sum of currents in two parallel branches is equal to the current drawn from the supply.
13	State that the voltages across components in parallel is the same for each component.
14	State that resistors convert electrical energy into heat energy.

15	State that an ohmmeter is used to measure resistance.
16	Use the unit of resistance, the ohm (Ω) , correctly.
17	State that an increase in resistance of a circuit leads to a decrease in the current in the circuit.
18	Carry out calculations involving the relationship $V = IR$.
19	Give two uses of variable resistors
20	State that the microphone, thermistor, LDR and switch are examples of input devices.
21	State that a microphone changes sound energy to electrical energy.
22	State that the resistance of a thermistor changes with temperature.
23	State that the resistance of an LDR decreases as the light gets brighter.
24	Identify from a list an appropriate input device for a given application.
25	State that an output device changes electrical energy into another form of energy.
26	State that the loudspeaker, buzzer, lamp, LED and electric motor are examples of output devices.
27	State the energy transformations involved for a given output device.
28	Identify from a list an appropriate output device for a given application.
29	Draw and identify the symbols for an AND gate, an OR gate and a NOT gate.
30	State that: high voltage = logic 1; and low voltage = logic 0.
31	State that for a NOT gate the output is the opposite of the input.
32	State that for an AND gate both inputs must be high for the output to be high.
33	State that for an OR gate either input must be high for the output to be high.
34	Explain how to use combinations of logic gates in simple control circuits.

3.5 Kinetic Theory

- \Box 1 State that pressure is the force per unit area exerted on a surface.
- **Q** 2 Carry out calculations involving pressure, force and area.
- **D** 3 Describe how the kinetic model accounts for the pressure of a gas.
- Discuss applications in which the pressure of a gas must be considered.