S1 Block Test Three Revision Booklet MP1

Contents

Angles
More Angles
Symmetry
Area/Perimeter
More Area/Perimeter
Better Buys

Angles

Exercise 1

Complementary & Supplementary Angles

1. Calculate the missing angles in each of the following:-

d

i

- 2. Write down the complement of :
 - a 60°
- b 20°
- 37°
- d 1°.

- Write down the supplement of :-3.
 - 30°
- 110°
- 77°
- 9.5°.

What angle is its own :-4.

- complement
- supplement?

What is the sum of all the angles round a point? 5.

Angles

Angles Round a Point

Calculate (do not measure) the sizes of the angles marked a, b, c,

2. An arrow lands on a target as shown. Calculate the size of the shaded angle.

3.

This clock shows a time of 1.30. Calculate the size of the shaded angle.

Five angles round a point are 39°, 122°, 77°, and two unknown equal angles. Find one of the unknown angles.

Angles

Vertically Opposite Angles

Write down the sizes of all the angles marked with a ① .

Sketch all the diagrams above and fill in all the missing angles. 2.

Angles in a Triangle

Calculate the size of the angles marked a, b, c,

Anales

2. Copy each diagram below and fill in all the missing angles :-

54°

3. Copy each diagram below and fill in all the missing angles :-

a

140° 135°

Exercise 5

Angles Mixed Exercise

1. Copy all the diagrams below filling in all missing angles :-

39°

c 39°

Answers to Chapter 3

Exercise 1 - Complementary & Supplementary Angles

1.	a 55°	ь 73°	c 61°	d 47°
	€ 145°	f 65°	g 94°	h 52°
	i 30°	j 22.5°		
2.	a 30°	ь 70°	c 53°	d 89°
3.	a 150°	ь 70°	c 103°	d 170·5°
4.	45°	ь 90°		
5.	360°			

Exercise 2 - Angles Round a Point

1.	a 124°	b 145°	c 85°	d 135°
	€ 130°	f 90°	90°	h 60°
	i 89°	j 171°	k 41°	I 12°
2.	108°			

45° 4. 61°

Exercise 3 - Vertically Opposite Angles

1.	α	140°	Ь	87°	С	94°	d	166°
	e	91°	f	161·5°	9	90°	h	35.5°
2.	See drawings							

Exercise 4 - Angles in a Triangle

1.	α	90°	Ь	70°	С	40°	d 86°	
	e	58°	f	30°	9	78°	h 40°	
2.	α	54°, 72°					, 47-5°	
	c	45°, 45°			d	60°, 6	60°, 60°	
3.	α				Ь			
			_/	\				_
		/	/9	50	140°	40°	45° 135°	ī
				1		/	. /	
		143°/37°		48	3	16	5°	
	-	0 /1420			_			

Exercise 5 - Mixed Exercise

More Angles

Exercise 1

Corresponding Angles

- Copy and complete :- Corresponding (F) angles are e.....
- 2. Copy the diagrams and mark all the corresponding (F) angles with a * :-

Write down the sizes of all the angles in the following diagrams: (∠ABC = 85°).

B 85° C

4. Sketch each of the following and fill in all the missing angles :-

42°

Exercise 2

Alternate Angles

- 1. Copy and complete:- Alternate (Z) angles are e......
- 2. Copy the diagrams and mark all the alternate (Z) angles with a * :-

•

More Angles

3. Write down all the sizes of the angles in the following diagrams:- (e.g. ∠ABC = 69°).

G B C C

4. Sketch each of the following and fill in all the missing angles :-

a

Exercise 3

Mixed Exercise

Make a neat rough sketch of each of the following diagrams.
 Fill in all the missing angles.

c

Ь

c

d

2. Sketch each of the following and fill in all the missing angles :-

a

More Angles

- What size of angle is complimentary to 34°? 1.
 - Write down the supplement of 85°.
- Make a neat sketch of each diagram and find the value of each letter :-2.

9

Ch 6 Ex 2 Alternate Angles

l. equal 2. check diagrams

Ch 6 Ex 1 Corresponding Angles

- 1. equal
- 2. Check diagrams
 - 1

Ch 6 Ex 3 Mixed Exercise

- 1. a 41° b 160° c 54°, 126°, 126° d 50-5°, 50-5°
- 2. a

Ch 6 Revisit - Review - Revise 6

1. a 56° b 95° 2. a 33° b 37° c 115° d 42·5° e 81° f 52° g 48° h 107° i 70° i 31°

Ch 6 Cumulative Ex 2 (Chapters 1-6)

- 1. a 9 b 169 c 81 d 11 e 2
- small 90p per 50g, large 80p per 50g large tin is cheaper
- 3. a 60 b l
- 4. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
- 2x2x2x5x7
- 6. a y=4x-1 b y=x-5
- 7. a 5 b 7 c 3 d 1 e 2 f -5
- 8. a x < 5 b x < 4 c x ≥ 4
- 9. a x = 107° b y = 122°
- 10. 1 didlii 25000 splinkiis

Exercise 1

Line Symmetry

1. Make a neat tracing of each of the following shapes.

- 2. a For each shape you have traced (or copied) show all lines of symmetry.
 - **b** Write down next to each shape how many lines of symmetry it has.
- 3. Make a list of those capital letters of the alphabet that have lines of symmetry.

Α

.

 Copy each of the following shapes neatly and complete each one such that the dotted line is a line of symmetry each time.

Exercise 2

Rotational Symmetry

1. Which of the following shapes have half-turn symmetry? (Answer yes or no).

continues over the page ...

- 2. For each shape in Question 1, state the order of symmetry.
- 3. a Which seven capital letters of the alphabet have $\frac{1}{2}$ -turn symmetry?

A B C

b Of these seven letters, only three do <u>not</u> have a line of symmetry.
Which three?

Exercise 3

Creating a Shape with Half-turn Symmetry

1. Make a copy of each of the following shapes.

Create a shape which has half turn symmetry by rotating each shape by $180^{\rm o}$ about the dot.

a

Ь

ď

9

h

14

Exercise 4

Translation (Slide) Symmetry

1. Which of the following shapes would not "tile the plane".

- 2. a Draw each shape shown below and shade it in.
 - b Tile the plane using 6-8 congruent tiles

Area/Perimeter

Exercise 1

Perimeter & Area

- Calculate :-
- (i) the perimeter

5 cm

(ii) the area of each shape below :-

- Four strips of electrical wire fence 2. surround a rectangular field with area 8000 square metres.
 - Find the width of the field given that the length is 100 metres.
 - What is the total length of wire needed?
 - The wire costs 18p per metre. How much will the wire cost in total?

Exercise 1 - Perimeter & Area

```
    a (i) 34 cm (ii) 60 cm²
    b (i) 20 cm (ii) 25 cm²
    c (i) 30 cm (ii) 30 cm²
    d (i) 140 m (ii) 1000 m²
    e (i) 440 cm (ii) 4000 cm²
    a 80 m b 1440 m c £259.20
```


Calculate the area of each of the following rectangles.
 (In each case, make a small "sketch" of the rectangle, write down the rule "A = L x B" and calculate the area, in cm²).

2. Calculate the area of carpet needed for each of these assembly halls :-

17 m

2. Use the formula Area = $\frac{1}{2}(L \times B)$ each time to calculate the areas of the following triangles (make a neat sketch of each triangle):-

20 cm

d 14 cm

7.5 cm

Exercise 1

```
    a 180 cm<sup>2</sup> b 100 cm<sup>2</sup> c 280 cm<sup>2</sup>
    a 480 m<sup>2</sup> b 340 m<sup>2</sup> c 875 m<sup>2</sup>
```

2. a 36 cm² b 140 cm² c 104 cm² d 84 cm² d 30 cm² f 31·5 cm²

Exercise 4

- 1. a Calculate the area of the big rectangle (A).
 - **b** Calculate the area of the small rectangle (B).
 - c Calculate the total area of the shape.

- For each of these:-
- (i) Make a neat sketch.
- (ii) Calculate the area of each part (show working).
- (iii) Calculate the area of the whole shape.

9 cm

d

e

Exercise 4

```
    a 56 cm<sup>2</sup> b 21 cm<sup>2</sup> c 77 cm<sup>2</sup>
    a 325 cm<sup>2</sup> b 285 cm<sup>2</sup> c 270 cm<sup>2</sup>
    d 144 cm<sup>2</sup> e 420 cm<sup>2</sup>
```

Better Buys

Exercise 2

Best Buys - Money Management

- A tin of dog food is offered in two different sizes.
 - The small tin costs £3.45 for 600 grams.
 - The large tin costs £6 for one kilogram.

Which one is the better deal? Explain.

- Which is the better deal for each of the following and explain your answers?
 - A box of fudge costs £3.99 for a 475 gram box or £5.20 for a 650 gram box.
 - b Tennis balls box of 9 for £19.26 or box of 12 for £25.68.
- Cartons of apple juice are sold in different sizes.

Which is the best deal? Explain.

450 ml costs - 81p 1 litres costs - £1·60 2·5 litres costs - £3·50

Ch 2 Ex 2 Best Buys - Money Management

- Small 57-5p per 100g Large 60p per 100g Small tin better value
- a small 21p per 25g, large 20p per 25g. Larger is cheaper.
 - b 9 box €2·14 each, 12 box €2·14. Same price.
- 450 ml 9p per 50 ml, 11 8p per 50 ml,
 2-5 l 7p per 50 ml. Largest is best