S3 National 5 Block Test 1 Revision Sheet

Fractions (Non-Calculator)

Question 1

Find: (a) $\frac{2}{5} + \frac{1}{5}$	(b) $\frac{4}{5} + \frac{2}{3}$	(c) $\frac{8}{9} - \frac{2}{3}$	(d) $\frac{4}{5} - \frac{3}{8}$
(e) $2\frac{4}{5} + 3\frac{3}{4}$	(f) $1\frac{1}{7} + \frac{3}{5}$	(g) $5\frac{2}{3} - 3\frac{3}{5}$	(h) $5\frac{1}{3} - 2\frac{3}{4}$
Question 2 Find: (a) $\frac{4}{2} \times \frac{7}{2}$	$(h)^{\frac{2}{2}} \times \frac{9}{2}$	(c) $2^{\frac{1}{2}} \times 1^{\frac{1}{2}}$	(d) $5\frac{5}{2} \times 1\frac{3}{2}$

(u) ₉ [^] ₈	(6) 3 16	$(0/2_3 \times 1_5)$	$(0) \frac{5}{6} \frac{7}{7}$
(e) $\frac{5}{6} \div \frac{2}{3}$	(f) $\frac{7}{9} \div \frac{2}{3}$	$(g)\frac{15}{7} \div \frac{5}{14}$	(h) $3\frac{5}{9} \div 2\frac{2}{3}$

Question 3

(a) $\frac{1}{2} + \frac{1}{3} \times \frac{1}{6}$	(b) $\frac{5}{6} - \frac{1}{5} \times \frac{5}{12}$	(c) $\frac{3}{4}\left(\frac{1}{3}+\frac{2}{7}\right)$
(d) $\frac{2}{11} of 5 \frac{1}{2} \times \frac{1}{6}$	(e) $\left(\frac{11}{14}of 2\frac{4}{5}\right) \div \frac{3}{4}$	(f) $1\frac{1}{7}of\left(2\frac{3}{4}-\frac{7}{8}\right)$

Function Notation (Non-Calculator)

Question 1

If f(x) = 2x + 5, find the values of: (a) f(6) (b) f(0) (c) f(-5)

Question 2

If f(x) = 3x - 2, find the values of: (a) f(4) (b) f(-2) (c) f(10)

Question 3

If g(x) = 1 - 3x, find the values of: (a) g(4) (b) g(-1) (c) g(-5)

Question 4

If f(x) = 3x - 8 and f(t) = 13, find the value of t.

Question 5

If f(x) = 10x - 3 and f(t) = 25, find the value of t.

S2 Algebra (Non-Calculator)

Question 1

Multiply out the brackets:

(a) 2(2g + 3)	(b) 3(4a + 1)	(c) 5(1 + 2d)	(d) 2(3 – 4k)
(e) 6(6h – 1)	(f) 10(3 – 7n)	(g) 4(2a + 3y)	(h) 5(3t + x)
(i) 2(4b – 3c)	(j) 8(10k – 3p)	(k) 7(11n – 9x)	(l) 6(3ab – d)
(m) x(y + 5)	(n) a(p + 8)	(o) w(t−1)	(p) g(g – 2)
(q) a(n + 9)	(r) w(m – a)	(s) e(f – 10)	(t) x(2 + x)
(u) a(2n + g)	(v) x(4y + 3u)	(w) 6a(2 – 4a)	(x) 3u(10u – w)

Question 2

Solve each of the following equations:

(a) $2(x + 1) = 10$	(b) 3(2x + 8) = 30	(c) 5(5x – 1) = 20
(d) 4(4y + 1) = 36	(e) 9(2y – 10) = 0	(f) 7(5y – 2) = 56
(g) 3(k + 2) + 6 = 21	(h) 4(2w + 1) – 3 = 17	(i) 3(3p + 3) + 3p = -3
(j) 5(q + 3) + 2(2q - 5) = 23	(k) 5(3d + 2) + 3(1 – 2d) = 13	

Question 3

Solve each of the following equations:

Question 4		
$(g)\frac{1}{2}x + 1 = \frac{1}{3}x + 3$	(h) $\frac{3}{4}x - 5 = \frac{3}{5}x - 2$	(i) $\frac{1}{3}x + \frac{1}{2} = \frac{1}{4}x + \frac{1}{5}$
(d) $\frac{2}{3}x - 1 = 3$	(e) $\frac{3}{5}x + 11 = 0$	(f) $30 - \frac{3}{8}x = 21$
(a) $\frac{1}{2}x + 3 = 9$	(b) $\frac{1}{4}x - 2 = 1$	(c) $\frac{1}{8}x + 5 = 8$

Question 4

Factorise fully:			
(a) 4a + ac	(b) 6v – gv	(c) xy + xz	(d) p ² + 9p
(e) 3g – g ²	(f) n² – 4n	(g) 7xr + 7xs	(h) 3jk – 6jh
(i) 12vw – 12w	(j) 3d ² + 8d	(k) 9g² – 15ge	(l) 2n² – n
(m) 4a + 14a²	(n) p – 2p ²	(o) 3c ² – 12dc	(p) 16ab + 24b ²

Pythagoras (Calculator)

Question 1

Use Pythagoras' theorem to calculate the length of the hypotenuse in each triangle: (a) (b) 12 cm

Question 2

Calculate the size of each of the smaller sides in these triangles:

Question 3

The diagram below shows the position of three towns. Lowtown is due west of Midtown. The distance from

- Lowtown to Midtown is 75 kilometres.
- Midtown to Hightown is 110 kilometres.
- Hightown to Lowtown is 85 kilometres.

Is Hightown directly north of Lowtown? Justify your answer.

Changing the Subject of the Formula (Non-Calculator)

Question 1

Change the subject of the formula to the letter given in square brackets:

(a)	v = u + at	[<i>a</i>]	(b)	$v^2 = u^2 + 2as$	[<i>s</i>]
(c)	$s = ut + \frac{1}{2}at^2$	[<i>u</i>]	(d)	P = mgh	[g]
(e)	$V = \pi r^2 h$	[<i>h</i>]	(f)	$K = \frac{1}{2}mv^2$	[<i>m</i>]
(g)	$A = \pi r^2$	[<i>r</i>]	(h)	$V = \pi r^2 h$	[<i>r</i>]
(i)	$V = \frac{1}{3}\pi r^2 h$	[<i>r</i>]	(j)	$V = \frac{4}{3}\pi r^3$	[<i>r</i>]
(k)	$V = \sqrt{t^2 - 3}$	[<i>t</i>]	(1)	$p = \pi n^2 + 2n^2$	[<i>n</i>]
(m)	$m = 2\pi\sqrt{v}$	[<i>v</i>]	(n)	$d = \sqrt{\frac{4A}{\pi}}$	[A]
(0)	$T = 2\pi \sqrt{\frac{L}{g}}$	[<i>L</i>]			

Percentages (Calculator)

Question 1

The Smiths buy a house for £60 000. If it appreciates in value at the rate of 9% per year, how much will it be worth in 5 years time?

Question 2

Amanda wins some money and decides to spend £200 on jewellery. If it appreciates at the rate of 2% per year, how much will the jewellery be worth 3 years from now?

Question 3

Peter buys a car for £3 000. If it depreciates at the rate of 20% per annum, how much will he be able to sell it for in 3 years time?

Question 4

Paul buys a new car costing £12 600. It depreciates in value by 30% in the first year and by 20% each year after that. How much will he be able to trade it in for in 3 years time?

Question 5

The price of a car has increased in value by 30%. If the car is now valued at \pm 7 800, what was the previous value of the car?

Question 6

The roll of school has fallen by 15% since the year 2001. If the school roll is now 1 190, what was the roll in 2001?

Question 7

The population of a Scottish village has dropped by 35%. If the population is now 420, what was the population originally?

Straight Line (Non-Calculator)

Question 1

Find the gradient of the line joining the two points:

(a) M (2, 2) and N (-3, 4)	(b) P (5, -1) and Q (-2, 10)
(c) R (-3, -5) and S (8, -4)	(d) T (4, -6) and U (7, -2)
(e) V (5, -6) and W (-2, 6)	(f) X (-1, 7) and Y (-2, 6)

Question 2

State the gradient and the coordinates of the y-intercept for each line below:(a) y = x - 7(b) y = -5x + 3(c) 5y = 3x - 10(d) y = -4x(e) 2x + y = 11(f) 2y = x - 5(g) 3y - x = 18(h) 3x + 7y - 21 = 0

Question 3

Write down the equation of the lines described below:

(a) with gradient 4, passing through the point (0, 5)

(b) with gradient -2, passing through the point (0, 1)

(c) with gradient $\frac{3}{4}$, passing through the point (0, -3)

(d) with gradient 4, passing through the point (3, 1)

(e) with gradient -5, passing through the point (-3, 1)

(f) with gradient $\frac{1}{2}$, passing through the point (-5, -2)

Question 4

Find the equation of the line joining each pair of points below: (a) A (4, 3) and B (8, 11) (b) C (1, 9) and D (3, 1) (c) E (-2, 6) and F (8, 8)

Question 5

Find the equation of the straight line shown in the diagram below:

Trigonometry (Calculator)

Question 1

Calculate the value of x in each of the following triangles (to 1 decimal place).

Question 2 Calculate the size of angle x^o in each case.

Circles (Calculator)

Question 1

Calculate the circumference of the following circles:

Question 2

Calculate the perimeter of each shape:

Question 3

Find the area of each circle below:

Question 4

A garden is designed as shown using a square of side 6 metres and four semi-circles.

Find the total area of the garden.

Bearings (Non-Calculator)

Question 1

Calculate the bearing of P from Q in the diagrams below:

