

MAC - Partial Fractions

1. Express as a single fraction a)
$$\frac{3}{w+2} + \frac{5}{w}$$
 b) $\frac{2}{b+1} + \frac{3}{b+2}$ c) $\frac{2}{t-7} - \frac{5}{t+9}$

2. Express each of the following as partial factions:

(a)
$$\frac{37x-81}{(x-3)(x+7)(2x-3)}$$
 (b) $\frac{2x+1}{(x-3)^2}$

(c)
$$\frac{8x-1}{(x-2)(x^2+1)}$$
 (d) $\frac{2x^3+11}{(x^2-4)(x-3)}$ (Careful here!)

3. Simplify: (a)
$$\frac{x+2}{x+5}$$
 (b) $\frac{x^3-5x^2+9x-7}{x^2-2x+3}$

4. Express as a single logarithm:

(a)
$$7 \ln 2 - 3 \ln 12 + 5 \ln 3$$
 (b) $\ln 12 - (\frac{1}{2} \ln 9 + \frac{1}{3} \ln 8)$

MAC – Differentiation 1

1. Differentiate the following with respect to *x*, simplifying your answers where possible:

(a)
$$y = x^2 \cos(2x+1)$$
 (b) $y = \frac{2x+1}{\sqrt{2x-1}}$ (c) $y = \frac{\sin x}{2+\cos x}$ (d) $y = \cos x^2 \sin 3x$

- **2**. Differentiate $f(x) = 3x^2 + 4x$ from 1^{st} Principles:
- **3.** Find the gradient of the curve $y = xe^{x-4}$ at the point (4,4).
- **4.** Prove the following identities:
 - (a) $\sin\theta \tan\theta + \cos\theta = \sec\theta$ (b) $\cos ec\theta \sin\theta = \cot\theta\cos\theta$
- **5.** Differentiate the following with respect to *x*, simplifying your answers where possible:
 - (a) $y = \tan 6x$ (b) $y = \tan^5 x$ (c) $y = \cot(2x^2 + 1)$
 - (d) $y = \exp(x^2 + 4)$ (e) $y = e^{-x} \sin x$ (f) $y = e^x \ln x$

MAC – Differentiation 2

1. If
$$y = 4x^2 - 3x + 1$$
, show that $y \frac{d^2y}{dx^2} + \frac{dy}{dx} - 8y + 3 = 8x$.

2. If
$$f(x) = 2x^3 + 5x$$
, find the value of a such that $f''(a) = 36$

- **3.** Differentiate the following with respect to *x* :
 - (a) $y = \ln(ax^2 + bx + c)$ (b) $\ln(x^2 e^x)$ (c) $y = \sec(4x^2 + 1)$
 - (d) $y = \cos ec6x$ (e) $y = \frac{\ln x}{e^x}$ (f) $y = \ln(\sec x)$
- 4. A function is defined by: $f(x) = \frac{3x}{x-2}$, $x \neq 2$. Show that f(x) is always decreasing.
- 5. Differentiate each of the following with respect to *x*:

(a)
$$y = \tan^{-1} 3x$$
 (b) $y = x \sin^{-1} x$

6. Find
$$\frac{dy}{dx}$$
 in terms of x and y for each of the following:

(a)
$$y^2 - x^2 = 12$$
 (b) $x^2 + xy + y^2 = 7$.

1. Find the equation of the tangent to the curve $3x^2 + 5y^2 = 17$ at the point (-2,1).

2. Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ when $xy + y^2 = 1$.

3. Use logarithmic differentiation to find
$$\frac{dy}{dx}$$
 of $y = 2x^x$.

- **4.** Find $\frac{dy}{dx}$ in terms of t for $x = t^2 + 6$ and $y = 4t^3$
- 5. A curve is defined by the parametric equations $x = \frac{1}{t+1}$, y = 4t. Find the equation of the tangent to this curve at the point where t = 1.
- 6. Find $\frac{d^2 y}{dx^2}$ in terms of *t* for the parametric equations: $x = 3\cos t$, $y = 3\sin t$.
- A spherical balloon is being inflated at a rate of 240cm³ per second.
 At what rate is the radius increasing when it is equal to 8cm?

1. Integrate the following with respect to the relevant variable:

(a)
$$\int 6x^{-3} - 2 + 3x^2 dx$$
 (b) $\int \frac{3 - x^5}{x^3} dx$ (c) $\int \frac{dt}{\sqrt{5 - 2t}}$

2. Integrate the following with respect to *x*:

(a)
$$\int \frac{dx}{x+3}$$
 (b) $\int e^{3x-1}dx$ (c) $\int \left(\frac{3}{x-1} - \frac{4}{x-2}\right)dx$
(d) $\int \frac{dx}{1-x}$ (e) $\int \frac{x^2}{x+1}dx$ (f) $\int e^{\frac{x}{2}}dx$

3. Integrate each of the following with respect to *x*:

(a)
$$\int \frac{x+5}{x+2} dx$$
 (b) $\int \sec^2(2x+1) dx$ (c) $\int \cos ec^2(3-5x) dx$

4. By using a suitable substitution or otherwise, integrate each of the following:

(a)
$$\int \frac{6x+5}{3x^2+5x+1} dx$$
 (b) $\int \frac{x}{2x^2+3} dx$ (c) $\int \frac{e^x}{e^x+1} dx$.

MAC – Integration 2

1. By using the substitution
$$x = 2\sin t$$
, show that $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx = \frac{\pi}{6}$.

2. Find the following integrals :

(a)
$$\int \frac{1}{\sqrt{64-x^2}} dx$$
 (b) $\int \frac{1}{49+9x^2} dx$ (c) $\int_{-2}^{2} \frac{1}{4+x^2} dx$

3. Integrate the following, using partial fractions :

(a)
$$\int \frac{22-x}{(2+x)(4-x)} dx$$
 (b) $\int \frac{2x^2+x+3}{(x+1)^2(3-x)} dx$

4. Use integration by parts to integrate the following:

(a)
$$\int x e^{-x} dx$$
 (b) $\int x^2 \sin^{-1} x dx$

(c)
$$\int_0^{\frac{\pi}{2}} x \sin x dx$$

1. Solve each differential equation i.e find y in terms of x:

(a)
$$2y \frac{dy}{dx} = 5x$$
 (b) $3 \frac{dy}{dx} = 4x(y-2)$

2. Given that
$$x^2 e^y \frac{dy}{dx} = 1$$
, and y = 0 when x = 1

Find y in terms of x.

- **3.** Mildew hits a crop of corn in a field. Its spread can be modelled by $\frac{dP}{dt} = kP(100 - P) \text{ where P is the percentage of the field affected in t days.}$ When t = 0, P = 1. When t = 5, P = 60.
 - (a) Express P in terms of t.
 - (b) Estimate the time it will take for 80% of the crop to be affected
- 4. Solve these for y:

(a)
$$\frac{dy}{dx} + \frac{y}{x} = 4x^2$$
 (b) $x\frac{dy}{dx} - 2y = \sqrt{x}$

5. Solve $(x+1)\frac{dy}{dx} - 3y = (x+1)^4$ given that y = 16 when x = 1 expressing your answer in the form y = f(x)

MAC – 2nd Order Differential Equations

1. Find the general solutions to these 2nd order ODES.

(a)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$

(b)
$$\frac{d^2 y}{dx^2} + 8\frac{dy}{dx} + 16 = 0$$

(c)
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$$

$$\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{2x}$$

3. Obtain the general solution of
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = 2x^2$$
 (7)

Given that
$$y = \frac{y}{2}$$
 and $\frac{dy}{dx} = 1$ when $x = 0$, find the particular solution (3)