MAC - Partial Fractions

1. Express as a single fraction
a) $\frac{3}{w+2}+\frac{5}{w}$
b) $\frac{2}{b+1}+\frac{3}{b+2}$
c) $\frac{2}{t-7}-\frac{5}{t+9}$
2. Express each of the following as partial factions:
(a) $\frac{37 x-81}{(x-3)(x+7)(2 x-3)}$
(b) $\frac{2 x+1}{(x-3)^{2}}$
(c) $\frac{8 x-1}{(x-2)\left(x^{2}+1\right)}$
(d) $\frac{2 x^{3}+11}{\left(x^{2}-4\right)(x-3)} \quad$ (Careful here!)
3. Simplify:
(a) $\frac{x+2}{x+5}$
(b) $\frac{x^{3}-5 x^{2}+9 x-7}{x^{2}-2 x+3}$
4. Express as a single logarithm:
(a) $7 \ln 2-3 \ln 12+5 \ln 3$
(b) $\ln 12-(1 / 2 \ln 9+1 / 3 \ln 8)$

Nomework ?

MAC - Differentiation 1

1. Differentiate the following with respect to x, simplifying your answers where possible:
(a) $y=x^{2} \cos (2 x+1)$
(b) $y=\frac{2 x+1}{\sqrt{2 x-1}}$
(c) $y=\frac{\sin x}{2+\cos x}$
(d) $y=\cos x^{2} \sin 3 x$
2. Differentiate $f(x)=3 x^{2}+4 x$ from $1^{\text {st }}$ Principles:
3. Find the gradient of the curve $y=x e^{x-4}$ at the point $(4,4)$.
4. Prove the following identities:
(a) $\sin \theta \tan \theta+\cos \theta=\sec \theta$
(b) $\operatorname{cosec} \theta-\sin \theta=\cot \theta \cos \theta$
5. Differentiate the following with respect to x, simplifying your answers where possible:
(a) $y=\tan 6 x$
(b) $y=\tan ^{5} x$
(c) $y=\cot \left(2 x^{2}+1\right)$
(d) $y=\exp \left(x^{2}+4\right)$
(e) $y=e^{-x} \sin x$
(f) $y=e^{x} \ln x$

MAC - Differentiation 2

1. If $y=4 x^{2}-3 x+1$, show that $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-8 y+3=8 x$.
2. If $f(x)=2 x^{3}+5 x$, find the value of a such that $f^{\prime \prime}(a)=36$
3. Differentiate the following with respect to x :
(a) $y=\ln \left(a x^{2}+b x+c\right)$
(b) $\ln \left(x^{2} e^{x}\right)$
(c) $y=\sec \left(4 x^{2}+1\right)$
(d) $y=\operatorname{cosec} 6 x$
(e) $y=\frac{\ln x}{e^{x}}$
(f) $y=\ln (\sec x)$
4. A function is defined by: $f(x)=\frac{3 x}{x-2}, x \neq 2$. Show that $\mathrm{f}(\mathrm{x})$ is always decreasing.
5. Differentiate each of the following with respect to x :
(a) $y=\tan ^{-1} 3 x$
(b) $y=x \sin ^{-1} x$
6. Find $\frac{d y}{d x}$ in terms of x and y for each of the following:
(a) $y^{2}-x^{2}=12$
(b) $x^{2}+x y+y^{2}=7$.
7. Find the equation of the tangent to the curve $3 x^{2}+5 y^{2}=17$ at the point $(-2,1)$.
8. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ when $x y+y^{2}=1$.
9. Use logarithmic differentiation to find $\frac{d y}{d x}$ of $y=2 x^{x}$.
10. Find $\frac{d y}{d x}$ in terms of t for $x=t^{2}+6$ and $y=4 t^{3}$
11. A curve is defined by the parametric equations $x=\frac{1}{t+1}, y=4 t$.

Find the equation of the tangent to this curve at the point where $t=1$.
6. Find $\frac{d^{2} y}{d x^{2}}$ in terms of t for the parametric equations: $x=3 \cos t$, $y=3 \sin t$.
7. A spherical balloon is being inflated at a rate of $240 \mathrm{~cm}^{3}$ per second. At what rate is the radius increasing when it is equal to 8 cm ?

MAC - Integration 1

1. Integrate the following with respect to the relevant variable:
(a) $\int 6 x^{-3}-2+3 x^{2} d x$
(b) $\int \frac{3-x^{5}}{x^{3}} d x$
(c) $\int \frac{d t}{\sqrt{5-2 t}}$
2. Integrate the following with respect to x :
(a) $\int \frac{d x}{x+3}$
(b) $\int e^{3 x-1} d x$
(c) $\int\left(\frac{3}{x-1}-\frac{4}{x-2}\right) d x$
(d) $\int \frac{d x}{1-x}$
(e) $\int \frac{x^{2}}{x+1} d x$
(f) $\int e^{x / 2} d x$
3. Integrate each of the following with respect to x :
(a) $\int \frac{x+5}{x+2} d x$
(b) $\int \sec ^{2}(2 x+1) d x$
(c) $\int \operatorname{cosec}^{2}(3-5 x) d x$
4. By using a suitable substitution or otherwise, integrate each of the following:
(a) $\int \frac{6 x+5}{3 x^{2}+5 x+1} d x$
(b) $\int \frac{x}{2 x^{2}+3} d x$
(c) $\int \frac{e^{x}}{e^{x}+1} d x$.

MAC - Integration 2

1. By using the substitution $x=2 \sin t$, show that $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x=\frac{\pi}{6}$.
2. Find the following integrals :
(a) $\int \frac{1}{\sqrt{64-x^{2}}} d x$
(b) $\int \frac{1}{49+9 x^{2}} d x$
(c) $\int_{-2}^{2} \frac{1}{4+x^{2}} d x$
3. Integrate the following, using partial fractions :
(a) $\int \frac{22-x}{(2+x)(4-x)} d x$
(b) $\int \frac{2 x^{2}+x+3}{(x+1)^{2}(3-x)} d x$
4. Use integration by parts to integrate the following:
(a) $\int x e^{-x} d x$
(b) $\int x^{2} \sin ^{-1} x d x$
(c) $\int_{0}^{\frac{\pi}{2}} x \sin x d x$

nomework

MAC - $1^{\text {st }}$ Order Differential Equations

1. Solve each differential equation i.e find y in terms of x :
(a) $2 y \frac{d y}{d x}=5 x$
(b) $3 \frac{d y}{d x}=4 x(y-2)$
2. Given that $x^{2} e^{y} \frac{d y}{d x}=1$, and $\mathrm{y}=0$ when $\mathrm{x}=1$

Find y in terms of x .
3. Mildew hits a crop of corn in a field. Its spread can be modelled by $\frac{d P}{d t}=k P(100-P)$ where P is the percentage of the field affected in t days. When $t=0, P=1$. When $t=5, P=60$.
(a) Express P in terms of t.
(b) Estimate the time it will take for 80% of the crop to be affected
4. Solve these for y :
(a) $\frac{d y}{d x}+\frac{y}{x}=4 x^{2}$
(b) $x \frac{d y}{d x}-2 y=\sqrt{x}$
5. Solve $(x+1) \frac{d y}{d x}-3 y=(x+1)^{4}$ given that $\mathrm{y}=16$ when $\mathrm{x}=1$ expressing your answer in the form $y=f(x)$

pomework o

MAC $-2^{\text {nd }}$ Order Differential Equations

1. Find the general solutions to these $2^{\text {nd }}$ order ODES.
(a) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$
(b) $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16=0$
(c) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0$
2. Obtain the general solution of $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=e^{2 x}$
3. Obtain the general solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=2 x^{2}$

Given that $\mathrm{y}=1 / 2$ and $\frac{d y}{d x}=1$ when $\mathrm{x}=0$, find the particular solution

