

4.13 Skills and Techniques 2 - Errors Answers

1. a)i) $\frac{0.02 \times 100}{10} = 0.2\%$

ii) $\frac{0.04 \times 100}{10} = 0.4\%$

b) The 10cm³ class A pipette has less of a percentage uncertainty because of the way it is manufactured. It will be a more expensive piece of apparatus than the 10cm³ class B pipette.

2. a) $\frac{0.25 \times 100}{500} = 0.05\%$

b) $\frac{0.50 \times 100}{500} = 0.10\%$

3. $\frac{0.1 \times 100}{18.5} = 0.54\%$

4. a) $C_1V_1 = C_2V_2$

$$1.45 \times 0.01 = C_2 \times 0.25$$

$$C_2 = 0.058 \text{ mol l}^{-1}$$

b) Error 10cm³ class B pipette

$$\frac{0.04 \times 100}{10} = 0.4\%$$

Error in 250cm³ volumetric flask

$$\frac{0.30 \times 100}{250} = 0.12\%$$

Combine both errors: $0.40\% + 0.12\% = 0.52\%$

Apply this percentage uncertainty to the concentration.

$$\frac{0.52 \times 0.058}{100} = 3.016^{-4} \text{ mol l}^{-1}$$

$$\underline{0.058 \pm 3 \times 10^{-4} \text{ mol l}^{-1}}$$

5. a) 10cm^3 of the 1.0 mol l^{-1} sodium carbonate solution should be pipetted into a 100cm^3 volumetric flask and made up to the mark with distilled water. The flask should be inverted several times.

(This can obviously be prepared by using 25cm^3 and diluting to 250cm^3).

b) First procedure (percentage error)

$$\frac{0.10 \times 100}{1.35} = \underline{7.4\%}$$

Second procedure (percentage error)

$$\frac{0.10 \times 100}{14.05} = \underline{0.71\%}$$

THERE IS A CLEAR REDUCTION IN THE PERCENTAGE ERROR.

6. Number of moles of HCl = $c \times v$

$$\text{Number of moles of HCl} = 0.98 \times 0.0265$$

$$\text{Number of moles of HCl} = 0.02597 \text{ moles}$$

HCl : KOH

1 : 1

0.02597 moles : 0.02597 moles

Concentration of KOH = n / v

$$\text{Concentration of KOH} = (0.02597 / 0.02)$$

$$\text{Concentration of KOH} = 1.2985 \text{ mol l}^{-1} (1.3 \text{ mol l}^{-1})$$

Percentage uncertainty in pipette

$$\frac{0.06 \times 100}{1} = 0.30\%$$

20

Percentage uncertainty in burette

$$0.10 \times 100 = 0.37735\% \text{ (0.38\%)}$$

26.5

Total uncertainty = 0.30% + 0.38%

Total uncertainty = 0.68%

$$\text{Overall uncertainty} = \frac{0.68 \times 1.2985}{100} = 0.00889298 \text{ mol l}^{-1} \text{ (0.009 mol l}^{-1})$$

Concentration of KOH = 1.3 ± 0.009 mol l⁻¹

