Lesson 4: Stoichiometry

*Read through the lesson notes. You can write them out, print them or save them.

*Once you have tried to understand the lesson answer the questions that follow and self-evaluate your work by checking the answers.

Learning Intention

-Practice different examples of stoichiometric calculations.

(This lesson does not involve any new theory. It builds on the use of important relationships such as $n = c \times v$ and $m = n \times GFM$). It will be set out as a series of worked examples for you to understand and then to practice.

Background

Stoichiometry is the study of mole relationships involved in chemical reactions. We have previous worked through the concept of stoichiometry in National 5 and Higher Chemistry. It is basically those questions that involve understanding balanced equations and using mole ratios to calculate the mass, number of moles or concentration of a substance.

A balanced equation simply informs us how many moles of a substance will react or be produced in relation to another substance.

Example

Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H₂
1 mole 2 moles 1 mole 1 mole

For Advanced Higher Chemistry, we are often asked to consider the concentration of a substance present in a commercial or laboratory sample of material. For example, you may be asked to analyse and calculate the concentration of ions in bleach or the mass of metals in alloys. Normally, the analysis is carried out by a volumetric titration and therefore the two key concepts are:

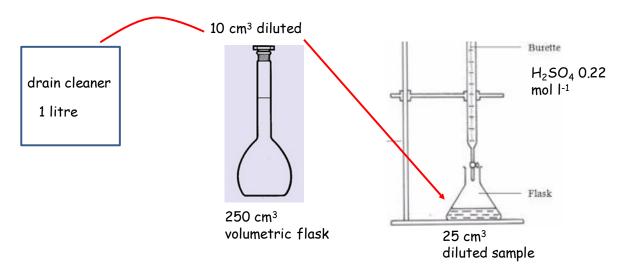
$$n = c \times v$$

AND

 $m = n \times GFM$

Worked Example 1

To determine the mass of sodium hydroxide, NaOH, in a commercial drain cleaner the following experiment was set up.


10cm³ of the liquid drain cleaner containing NaOH was diluted to 250cm³ in a volumetric flask.

 25cm^3 samples of this diluted solution were pipetted into a conical flask and titrated against $0.22 \text{mol l}^{-1} \text{ H}_2 \text{SO}_4$. The average of the concordant titres was 17.8cm^3 .

Calculate the mass of NaOH in 1 litre of the drain cleaner.

The examples you will come across in Advanced Higher often have more than one step to do when compared with mole ratio questions from National 5 and Higher Chemistry. As there is more reading to the question, it is often a good idea to take the information and draw it as a diagram to have a clearer picture of what you are being asked to do.

The steps involved in the experiment can be summarised in the following way.

- 1. 10cm³ of drain cleaner is taken from the container.
- 2. It is diluted to 250cm³ in a volumetric flask.
- 3. 25cm³ of the diluted sample is titrated against 0.22mol l⁻¹ H₂SO₄.

However, when answering the question, we set it out in the following order:

step 3 \rightarrow step 2 \rightarrow step 1.

Step 3 Titration (calculate number of moles of NaOH)

 H_2SO_4 + 2NaOH $\rightarrow Na_2SO_4$ + H_2O

n=?

c=0.22 mol l-1

v=0.0178 litres (17.8cm³)

n= c x v

n= 0.22 x 0.0178

n= 0.003916 moles

H₂SO₄ : 2NaOH

0.003916 : 0.007832moles

Step 2 Volumetric Flask (scale up)

0.007832 moles are present in each 25cm³ sample

0.07832 moles (x10) in 250cm³ volumetric flask (as its volume is ten times greater)

Step 1 Drain cleaner from original bottle (scale up)

The original sample taken from the bottle was 10cm³

0.07832 moles NaOH in 10cm³

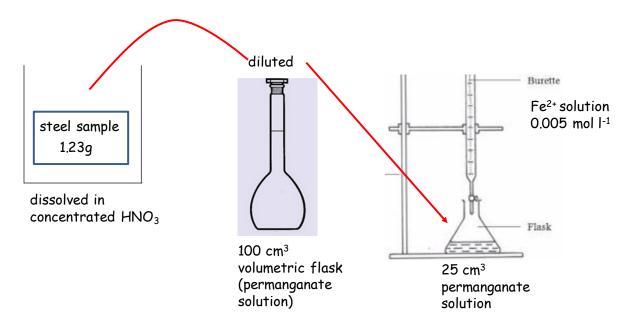
7.832 moles NaOH in 1 litre (1000cm³, as the volume is one hundred times greater)

Therefore, the mass of NaOH in the original bottle of drain cleaner is:

 $m = n \times GFM$

 $m = 7.832 \times 40$

m = 313.3g


Worked Example 2

A 1.23g sample of steel containing manganese was dissolved in concentrated nitric acid. The Mn²⁺ ions formed were then oxidised to permanganate ions. The resulting purple solution was made up to 100cm³ in a volumetric flask.

In a titration, a 25cm³ sample of the permanganate solution was reduced by 34.5cm³ of 0.005 mol l⁻¹ iron (II) solution. The equation for the titration is:

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

Calculate the percentage by mass of manganese in the original sample of steel.

- 1. Dissolve steel in concentrated nitric acid.
- 2. Dilute the sample to 100 cm³ in a volumetric flask.
- 3. 25 cm3 sample is diluted against 0.005 mol l⁻¹ Fe²⁺ solution.

Step 3 Titration (calculate number of moles of manganese)

$$5Fe^{2+} + MnO_4^{-} + 8H^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

 $n=?$
 $c=0.005 \text{ mol } l^{-1}$
 $v=0.0345 \text{ litres } (34.5\text{cm}^3)$

n= c x v n= 0.005 x 0.0345 n= 0.0001725 moles

5Fe²⁺ : MnO₄-

0.0001725 : <u>0.0000345moles</u>

Step 2 Volumetric Flask (scale up)

0.0000345 moles are present in each 25cm³ sample 0.000138 moles (x4) in 100cm³ volumetric flask (as its volume is <u>four</u> times greater)

Step 1 Calculate mass of manganese in steel sample

m = n x GFM m = 0.000138 x 54.9g m = 0.0076g

The percentage of manganese in the steel sample is given by:

0.0076g (mass of manganese) x 100 1.23g (mass of steel) 0.62%

→Watch the clip on Youtube.

https://www.youtube.com/watch?v=UL1jmJaUkaQ

- → Read Scholar Heriot-Watt/ Researching Chemistry Section 3.1, 3.3.
- → Answer the questions from Sheet 4.4 and check the answers when you have completed them.

4.4 Stoichiometry

1. A bottle of vinegar was analysed to find the concentration of ethanoic acid that it contained. A 25cm³ sample of the vinegar was taken and diluted to 250cm³ in a volumetric flask. 10cm³ samples of the diluted vinegar were than titrated with standardised 0.05mol l⁻¹ NaOH. The average volume of NaOH used in the titration was 18.4 cm³.

CH₃COOH (aq) + NaOH (aq)
$$\rightarrow$$
 CH₃COONa (aq) + H₂O (l)

Calculate the concentration of ethanoic acid in the vinegar.

2. Sodium carbonate was used to find the concentration of a sample of hydrochloric acid. A 2.43g sample of Na₂CO₃ was dissolved and made up to 250cm³ with distilled water in a volumetric flask.10cm³ portions of the sodium carbonate solution were pipetted into a conical flask and titrated with the hydrochloric acid. The average titre of hydrochloric acid for the reaction was 22.3cm³. The equation for the reaction is:

$$Na_2CO_3$$
 (aq) + 2HCl (aq) \rightarrow 2NaCl (aq) +CO₂ (g) + H₂O (l)

Calculate the concentration of the hydrochloric acid.

3. A 2.49g steel bolt was analysed to find the percentage of iron it contained. The bolt was dissolved in an excess of dilute sulfuric acid converting all the iron to iron (II) ions.

The solution was made up to 250cm³ with distilled water in a volumetric flask. Several 25cm³ samples of this solution were titrated with 0.05 mol l⁻¹ potassium permanganate and the average titre was 16.4cm³. The reactions taking place is:

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

- a) Calculate the number of moles of permanganate solution present in the average titre.
- b) Calculate the number of moles of Fe²⁺ (aq) in an average 25cm³ sample.
- c) Calculate the mass of iron in the bolt.
- d) Express this mass as a percentage of the iron in the steel.

4. A 5.82g sample of impure ethanedioic acid (COOH)₂, is dissolved in distilled water and made up to 250cm³ in a volumetric flask. Then 25cm³ portions of this solution are titrated against standard 0.1 mol l⁻¹ potassium permanganate. The average titre to reach the end point was 24.2cm³. The only reactions taking place is.

$$2MnO_4^- + 5(COOH)_2 + 6H^+ + \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$$

Calculate the percentage purity, by mass, of the original ethanedioic acid sample.

5. A bottle of hydrogen peroxide solution, H₂O₂ (aq), was analysed as follows. A 5cm³ sample of the solution was diluted to 250cm³ in a volumetric flask. Several 25cm³ samples of the diluted solution were titrated with standard 0.02 mol l⁻¹ potassium dichromate solution. The reactions taking place were:

$$Cr_2O_7^{2-}$$
 (aq) + 14H⁺ (aq) + 6e \rightarrow 2Cr³⁺ (aq) + 7H₂O (l)
H₂O₂ (aq) \rightarrow O₂ (g) + 2H⁺ (aq) + 2e

The average endpoint was observed when 35.8cm³ of the dichromate solution was added.

- a) Give the overall balanced redox equation.
- b) Calculate the number of moles of hydrogen peroxide in the average 25cm³ diluted sample.
- c) Calculate the number of moles of hydrogen peroxide in the 5cm³ sample which was taken from the original bottle.
- d) Calculate the concentration of the hydrogen peroxide solution in the original bottle.
- 6. 25·0 cm³ of an acidified solution of potassium oxalate, K₂C₂O₄, was heated to 80 °C and titrated with a standard solution of 0·020 mol l⁻¹ potassium permanganate, KMnO₄.
 The end-point was reached when 22·5 cm³ of KMnO₄ solution had been added.

The equation for the reaction is:

$$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ + \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O_4^{-}$$

Calculate the concentration of the potassium oxalate solution used in the titration.

7. 1·80 g of iron(II) ammonium sulfate, Fe(NH₄)₂(SO₄)₂.6H₂O, was dissolved in 35 cm³ of distilled water. The solution was then diluted to 50 cm³ using dilute sulfuric acid. The final solution was titrated against potassium permanganate solution. 10 cm³ of the iron(II) ammonium sulfate solution required 30 cm³ of the permanganate solution to reach the end point at which all the iron(II) had been converted to iron(III).

The equation for the titration is:

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

- a) Calculate the number of moles of iron(II) ions present in 1.80 g of iron(II) ammonium sulfate.
- b) How many moles of iron (II) ions are present in the 10 cm³ portion of iron(II) ammonium sulfate used in the titration.
- c) Calculate the concentration of permanganate solution used in the titration.
- 8. The concentration of a thiosulfate solution can be determined by following 2 steps.
 - Step 1: Excess Iron(III) nitrate was added to 40·0 cm³ of 0·10 mol l⁻¹ of potassium iodide solution producing iron(II) ions and iodine.

$$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$$

Step 2: The iodine formed was titrated against sodium thiosulfate solution. 15·0 cm³ of sodium thiosulfate solution was required for complete reaction. The reaction can be represented by the equation:

$$I_2(aq) + 2S_2O_3^{2-}(aq) ---> 2I^-(aq) + S_4O_6^{2-}(aq)$$

- a) Calculate the number of moles of iodine produced from the potassium iodide.
- b) Calculate the concentration of the sodium thiosulfate solution.
- 9. Brass is an alloy consisting mainly of copper and zinc. To determine the percentage of copper in a sample of brass, 3·13 g of the brass was dissolved in concentrated nitric acid and the solution diluted to 100 cm³ in a volumetric flask. Excess potassium iodide was added to 10·0 cm³ of this solution, iodine being produced according to the equation:

Equation 1
$$2Cu^{2+}(aq) + 4l^{-}(aq) \rightarrow 2Cul(s) + l_2(aq)$$

The iodine formed was titrated with $0\cdot10$ mol l⁻¹ thiosulfate solution, $S_2O_3^{2-}$. The volume of thiosulfate solution required for complete reaction was $24\cdot8$ cm³.

Equation 2
$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$$

Calculate the percentage by mass of copper in the sample of brass.

