National 5 Chemistry

Unit 2 - Nature's Chemistry Summary Notes

Success Criteria

- \checkmark I am confident that I understand this and I can apply this to problems
- ? I have some understanding but I need to revise this some more
- × I do not understand this and I need help with it

l wil	I will be successful if I can		Self-Evaluation	
1	Name the elements present in a hydrocarbon	~	?	х
2	Describe the solubility of hydrocarbons in water	~	?	x
3	Define a homologous series	~	?	х
4	Give examples of different homologous series	~	?	х
5	Write the general formula for the alkanes	~	?	х
6	Name the alkanes containing up to 8 carbon atoms	~	?	х
7	Write the molecular formula for the alkanes containing up to 8 carbon atoms	✓	?	x
8	Draw the full structural formula for the alkanes containing up to 8 carbon atoms	~	?	x
9	Describe the term saturated	~	?	х
10	Give examples of uses of alkanes and explain the properties of the alkanes that make them suitable for this	~	?	x
11	Write the general formula for the alkenes	~	?	х
12	Name the alkenes containing up to 8 carbon atoms	~	?	х
13	Write the molecular formula for the alkenes containing up to 8 carbon atoms	~	?	x
14	Draw the full structural formula for the alkenes containing up to 8 carbon atoms	~	?	x
15	Describe the term unsaturated	~	?	х
16	Give examples of uses of alkenes and explain the properties of the alkenes that make them suitable for this	~	?	x
17	Write the general formula for the cycloalkanes	~	?	х
18	Name the cycloalkanes containing up to 8 carbon atoms	~	?	х
19	Write the molecular formula for the cycloalkanes containing up to 8 carbon atoms	~	?	x
20	Draw the full structural formula for the cycloalkanes containing up to 8 carbon atoms	~	?	x
21	Describe the test for unsaturation/saturation	~	?	x
22	Systematically name a branched chain alkane	✓	?	x

22	Systematically name a branched chain alkene indicating the position of the		2	v
23	double bond	v	4	X
24	Define an isomer	✓	?	x
25			2	
25	Identify isomers from given structures	~	?	Х
26	Draw isomers of a given structure	~	?	х
27	Give examples of addition reactions of alkenes	✓	?	х
28	Identify the products of an addition reaction	✓	?	Х
29	Draw the products of an addition reaction	✓	?	х
30	Name the products of an addition reaction	✓	?	x
31	Identify a hydroxyl group	 ✓ 	?	х
32	Write the general formula of the alcohols	✓	?	x
33	Name the alcohols containing up to 8 carbon atoms	✓	?	x
34	Systematically name alcohols indicating the position of the hydroxyl group	✓	?	x
35	Write the molecular formula for the alcohols containing up to 8 carbon atoms	✓	?	x
	Draw the full structural formula for the alcohols containing up to 8 carbon			
36	atoms	~	?	х
27	Give examples of uses of alcohols and explain the properties of the alcohols			
37	that make them suitable for this	v	:	Х
38	Describe the relationship between the size of the alcohol and its solubility	✓	?	х
20	Explain the relationship between the size of the alcohol and its melting point		2	×
37	and boiling point in terms of the strength of intermolecular forces	·	÷	~
40	Identify a carboxyl group	✓	?	Х
4	Write the general formula of the carboxylic acids	✓	?	х
42	Name the carboxylic acids containing up to 8 carbon atoms	✓	?	x
42	Write the molecular formula for the carboxylic acids containing up to 8 carbon		2	
43	atoms	v	:	X
44	Draw the full structural formula for the carboxylic acids containing up to 8	~	?	х
	carbon atoms			
45	Give examples of uses of carboxylic acids and explain the properties of the	~	?	х
46	Describe the relationship between the size of the alcohol and its solubility	✓	?	х
47	Explain the relationship between the size of the carboxylic acid and its melting	~	?	х
	point and boiling point in terms of the strength of intermolecular forces		-	

48	Describe a combustion reaction	✓	?	х
49	Define the term exothermic	~	?	х
50	Write balanced chemical equations for combustion reactions	✓	?	Х
51	Use E=cm Δ T to calculate the energy released when a fuel is burned	✓	?	Х
52	Carry out calculations from balanced chemical equations	✓	?	Х

Homologous Series Summary Table

	Naming	F	atures	
Alkanes	-ANE	Only single bonds	—c—c—	
Alkenes	-ENE	Contain double bonds	_c=c_	
Cycloalkanes	CYCLOANE	Chain of carbon atoms join	ر دد	
Alcohols	-OL	Contain a hydroxyl group	— он	
Carboxylic Acids	-OIC ACID	Contain a carboxyl group	о Ш с — он	

Key Area 2.1 - Hydrocarbons

Hydrocarbons

- Hydrocarbons are molecules containing only hydrogen and carbon
 - \circ $\;$ hydrocarbons are insoluble in water $\;$
- A homologous series is a family of hydrocarbons with similar chemical properties and the same general formula
- Alkanes and alkenes are examples of homologous series of hydrocarbons

Naming Hydrocarbons

• When we name hydrocarbons, the prefix tells us how many carbon atoms are in the chain

Prefix	Number of Carbon atoms
Meth	1
Eth	2
Prop	3
But	4
Pent	5
Hex	6
Hept	7
0ct	8

Full Structural Formula

- The full structural formula of a molecule shows how the atoms are arranged including the bonds made and elements present
- It is important to remember that carbon atoms have to make 4 bonds and hydrogen atoms can make only one bond

Molecular Formula

- The molecular formula of a molecule states how many atoms of each element are present in the molecule
- The elements are represented by their elemental symbol

Alkanes

- Have the general formula C_nH_{2n+2}
- Are saturated they contain only single C-C bonds
- Have no reaction with bromine water (bromine water remains yellow)
- Alkanes are commonly found in fuels, they can be burned to release energy
- The names, number of carbons and molecular formula for the alkanes are shown in the table below

Name	No. of carbons	Molecular formula
methane	1	CH ₄
ethane	2	C_2H_6
propane	3	C ₃ H ₈
butane	4	C ₄ H ₁₀
pentane	5	C ₅ H ₁₂
hexane	6	C ₆ H ₁₄
heptane	7	C ₇ H ₁₆
octane	8	C ₈ H ₁₈

• The diagram below shows the full structural formula of methane

• The diagram below shows the full structural formula of ethane

Alkenes

- $\bullet \quad Have \ the \ general \ formula \ C_nH_{2n}$
- Are unsaturated they contain C=C double bonds
- Rapidly decolourise bromine water (bromine water changes from yellow to colourless)
- Alkenes can be used in the production of plastics due to the presence of the double bond
- The names, number of carbons and molecular formula for the alkenes are shown in the table below

Name	No. of carbons	Molecular formula
ethene	2	C ₂ H ₄
propene	3	C ₃ H ₆
butene	4	C ₄ H ₈
pentene	5	C ₅ H ₁₀
hexene	6	C ₆ H ₁₂
heptene	7	C ₇ H ₁₄
octene	8	C ₈ H ₁₆

• The diagram below shows the full structural formula of ethene

• The diagram below shows the full structural formula of propene

Cycloalkanes

- Have the general formula $\mathsf{C}_n\mathsf{H}_{2n}$
- Are saturated they contain only single C-C bonds
- Have no reaction with bromine water (bromine water remains yellow)
- The names, number of carbons and molecular formula for the cycloalkanes are shown in the table below

Name	No. of carbons	Molecular formula
cyclopropane	3	C ₃ H ₆
cyclobutane	4	C ₄ H ₈
cyclopentane	5	C ₅ H ₁₀
cyclohexane	6	C ₆ H ₁₂
cycloheptane	7	C ₇ H ₁₄
cyclooctane	8	C ₈ H ₁₆

• The diagram below shows the full structural formula of cyclopropane.

• The diagram below shows the full structural formula of cyclobutane.

Systematic Naming

- Systematic naming is used to give more information about the structure of the molecule
 - o It can be used to indicate the position of branches
 - $\circ~$ It can be used to indicate the position of a double bond

Naming a branched alkane

- 1. Identify the longest chain of carbon atoms and name after the appropriate alkane
- 2. Number the carbon atoms starting from the end of the chain closest to the branch
- 3. Name the branch from the number of carbon atoms in the branch

Number of carbon atoms in branch	Name of branch
1	methyl
2	ethyl
3	propyl

- 4. Use 'di' and 'tri' as a prefix to the branch name when there are more than one of that branch in the molecule
- 5. Add position of branch, name of branch and name of longest chain together
- For example,
 - 1. Longest chain of 5 carbon atoms, **PENTANE**

2. Number the carbons in the longest chain

3. Branch on carbon 2 has 1 carbon atom, METHYL

4. Only one branch so *does not* require 'di' or 'tri'

5. The systematic name of this structure is 2-methylpentane

• For example,

Step 5 The systematic name of this structure is 3,4-dimethylhexane

Naming a branched alkene

- 1. Identify the longest chain of carbon atoms containing the double bond and name after the appropriate alkene
- 2. Number the carbon atoms starting from the end of the chain closest to the double bond
- 3. Identify the position of the double bond
- 4. Name the branch from the number of carbon atoms in the branch

Number of carbon atoms in branch	Name of branch
1	methyl
2	ethyl
3	propyl

- 5. Use 'di' and 'tri' as a prefix to the branch name when there are more than one of that branch in the molecule
- 6. Add position of branch, name of branch, position of double bond and name of longest chain together
- For example,
 - 1. Longest chain of 5 carbon atoms, PENTENE

2. *Number the carbons* in the longest chain

3. Double bond starting on carbon 1

4. Branch on carbon 4 has 1 carbon atom, METHYL

- 5. Only one branch so *does not* require 'di' or 'tri'
- 6. The systematic name of this structure is 4-methylpent-1-ene
- For example,

Isomers

- Isomers are molecules with the same molecular formula and different structural formula
- Isomers can have different properties including melting point and boiling point
- To determine if structures are isomers
 - 1. Write the molecular formula for each structure
 - 2. Write the systematic name for each structure
- For example,

1. C₆H₁₄ 2. 2,3-dimethylbutane

This structure has the same molecular formula and a different structural formula

This is an isomer of hexane

1. C₆H₁₄ 2. hexane

This structure has the same molecular formula and the same structural formula

This is NOT an isomer of hexane

• For example,

1. C₄H₈ 2. but-2-ene

This structure has the same molecular formula and a different structural formula

This is an isomer of but-1-ene

1. C₄H₈ 2. but-1-ene

This structure has the same molecular formula and the same structural formula

This is NOT an isomer of but-1-ene

1. C₄H₈ 2. 2-methylprop-1-ene

This structure has the same molecular formula and a different structural formula

This is an isomer of but-1-ene

1. C₅H₁₀ 2. 2-methylbut-1-ene

This structure has a different molecular formula and a different structural formula

This is NOT an isomer of but-1-ene

Reactions of alkenes

- Alkenes can undergo addition reactions due to the reactive double bond
- There are three addition reactions; hydrogenation, hydration and halogenation

Hydrogenation

- Hydrogenation is the addition of hydrogen across the double bond present in an alkene
- Hydrogenation of an alkene always results in the formation of an alkane
- For example, the reaction of hydrogen with ethene to produce ethane

Hydration

- Hydration is the addition of water across the double bond present in an alkene
- Hydration of an alkene always results in the formation of an alcohol
- For example, the reaction of hydrogen with ethene to produce ethanol

Halogenation

- Halogenation is the addition of a halogen molecule across the double bond present in an alkene to produce a dihaloalkane
- For example, the reaction of bromine with ethene to produce dibromoethane

Key Area 2.2 - Everyday Consumer Products

Alcohols

- Have the general formula $C_nH_{2n+1}OH$ ($C_nH_{2n+2}O$)
- Contain a hydroxyl group (-OH) and can be identified by the '-ol' name ending
- The names, number of carbons and molecular formula for the alcohols are shown in the table below

Name	No. of carbons	Molecular formula
methanol	1	CH₃OH
ethanol	2	C ₂ H ₅ OH
propanol	3	C ₃ H ₇ OH
butanol	4	C4H9OH
pentanol	5	C₅H ₁₁ OH
hexanol	6	C ₆ H ₁₃ OH
heptanol	7	C7H15OH
octanol	8	C ₈ H ₁₇ OH

• The diagram below shows the full structural formula of methanol

• The diagram below shows the full structural formula of ethanol

Properties of Alcohols

- Alcohols are flammable and can be used as fuels, they can be burned to release energy
- The melting point and boiling point of an alcohol increases as the size increases
 - \circ This is due to an increase in the strength of the intermolecular forces
 - The solubility of an alcohol in water decreases as the size increases
 - \circ $\,$ Methanol, ethanol and propanol are considered miscible in water $\,$

Naming Alcohols

- 1. Identify the longest chain of carbon atoms containing the hydroxyl group and name after the appropriate alcohol
- 2. Number the carbon atoms starting from the end of the chain closest to the hydroxyl group
- 3. Identify the position of the hydroxyl group
- 4. Add position of hydroxyl group and name of longest chain together
- For example,
 - 1. Longest chain of 4 carbon atoms, **BUTANOL**

2. Number the carbons in the longest chain

- 3. Hydroxyl group on carbon 1
- 4. The systematic name of this structure is **butan-1-ol**
- For example,

Step 4 The systematic name of this structure is pentan-2-ol

Carboxylic Acids

- Have the general formula $C_nH_{2n+1}COOH$ ($C_nH_{2n}O_2$)
- Contain a carboxyl group (-COOH) and can be identified by the '-oic acid' name ending
- Carboxylic acids can be used as solvents or reacted with alcohols to form esters
- Carboxylic acids have a low pH
- The names, number of carbons and molecular formula for the carboxylic acids are shown in the table below

Name	No. of carbons	Molecular formula
methanoic acid	1	CH ₂ O ₂
ethanoic acid	2	C ₂ H ₃ O ₂
propanoic acid	3	C ₃ H ₆ O ₂
butanoic acid	4	$C_4H_8O_2$
pentanoic acid	5	$C_5H_{10}O_2$
hexanoic acid	6	C ₆ H ₁₂ O ₂
heptanoic acid	7	C7H14O2
octanoic acid	8	C ₈ H ₁₆ O ₂

• The diagram below shows the full structural formula of methanoic acid

• The diagram below shows the full structural formula of ethanoic acid

- Ethanoic acid is also known as vinegar
- Vinegar can be used as a food preservative or used in cleaners to remove lime scale

Properties of Carboxylic Acids

- The melting point and boiling point of a carboxylic acid increases as the size increases
 This is due to an increase in the strength of the intermolecular forces
 - The solubility of a carboxylic acid in water decreases as the size increases
 - Methanoic acid, ethanoic acid and propanoic acid and butanoic acid are considered miscible in water

Key Area 2.3 - Energy from fuels

- Fuels can be burned to release energy
 - $\circ~$ This is known as a combustion reaction
 - Combustion reactions are exothermic (give out energy)
 - $\circ\;$ The fuel reacts with oxygen in the air to produce carbon dioxide and water

Writing combustion equations

- The fuel reacts with oxygen to produce carbon dioxide and water
- For example, the combustion of ethane

Word equation:	ethane + oxygen	>	carbon dioxide + water
Chemical equation:	$C_2H_6 + O_2$		CO ₂ + H ₂ O
Balanced equation:	2 C ₂ H ₆ + 7 O ₂	>	4CO ₂ + 6H ₂ O

• For example, the combustion of propane

Word equation:	propane + oxygen	>	carbon dioxide + water
Chemical equation:	$C_{3}H_{8} + O_{2}$	>	CO ₂ + H ₂ O
Balanced equation:	C ₃ H ₈ + 5 O ₂		3 CO ₂ + 4 H ₂ O

- For example, the combustion of butanol Word equation: butanol + oxygen \longrightarrow carbon dioxide + water Chemical equation: $C_4H_{10}O + O_2 \longrightarrow CO_2 + H_2O$ Balanced equation: $C_4H_{10}O + 6O_2 \longrightarrow 4CO_2 + 5H_2O$
- For example, the combustion of pentane Word equation: pentane + oxygen \longrightarrow carbon dioxide + water Chemical equation: $C_5H_{12} + O_2 \longrightarrow CO_2 + H_2O$ Balanced equation: $C_5H_{12} + 8O_2 \longrightarrow 5CO_2 + 6H_2O$

Energy released

• The energy released from burning a fuel can be calculated using the following equation

• An example is shown below

A student calculated the energy absorbed by water when ethanol is burned. The data below was recorded.

Mass of ethanol burned (kg)	0.5
Volume of water heated (cm ³)	100
Initial temperature of water (°C)	24
Fend temperature of water (°C)	32

Calculate the energy released during this experiment

Conversion
 $1 cm^3 = 1ml = 1g$
1000g = 1kgE= ?
 $C = 4.18 kJkg^{-10}C^{-1}$
m = 100g = 0.1kg
 $\Delta T = 32-24 = 8^{\circ}C$ E= cm\Delta T
 $= 4.18 \times 0.1 \times 8$
= <u>3.3kJ</u>

Calculations from combustion equations

- It is possible to calculate the concentration/ volume/ mass of a reactant or product required in a reaction
 - $\circ~$ A balanced chemical equation is required
 - The mole calculations
- The following steps are used
 - 1. Write a balanced chemical equation
 - 2. Circle the two compounds mentioned in the question
 - 3. Write the molar ratio
 - 4. Calculate the number of moles of the substance you have been given information about
 - 5. Use the molar ratio to state the number of moles of the compound you are trying to find
 - 6. Calculate what you are being asked in the question
- An example is shown below

Question: The equation below shows the complete combustion of methane in oxygen.

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$

Calculate the mass of carbon dioxide produce when 4g of methane is burned.

1. Balanced chemical equation

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$

- 2. Circle the two compounds mentioned in the question
 - \circ $\;$ methane and carbon dioxide are mentioned in the question

3. Write the molar ratio

4. Calculate the number of moles of the substance you have been given information about

n = m/GFM n = 4/16 n = 0.025 moles of CH₄

5. Use the molar ratio to state the number of moles of the compound you are trying to find

CH₄ : CO₂ 1 mole : 1 mole 0.25 moles : 0.25 moles of CO₂

6. Calculate the mass

n = m/GFM m = n x GFM m = 0.25 x 44 m = <u>11g</u>