National 5 Chemistry

Unit 3 - Chemistry in Society Summary Notes

Success Criteria

- ✓ I am confident that I understand this and I can apply this to problems
- ? I have some understanding but I need to revise this some more
- × I do not understand this and I need help with it

I will be successful if I can			Self- Evaluation		
1	Describe how metallic bonds are formed	~	?	x	
2	Explain why metals conduct electricity	~	?	x	
3	Write balanced chemical equations for the reactions of metals with water, oxygen or acids	~	?	x	
4	Write balanced equations for the reactions of metals with water, oxygen or acids	~	?	x	
5	Describe the reactivity series	~	?	х	
6	Determine the most appropriate extraction method for different metals using the electrochemical series	~	?	х	
7	Describe the process of electrolysis	~	?	Х	
8	Balance chemical equations for the extraction of metals	✓	?	x	
9	Describe the reduction of metal ions during extraction		?	х	
10	Calculate the percentage of a metal in a metal ore using the molecular formula		?	x	
11	Determine the direction of electron flow in an electrochemical cell		?	x	
12	Discuss the voltage produced by different metals in an electrochemical cell	~	?	x	
13	Describe a reduction reaction	~	?	X	
14	Describe an oxidation reaction	~	?	х	
15	Describe a redox reaction	~	?	х	
16	Write ion-electron equations for oxidation and reduction reactions	~	?	X	
17	Write redox equations	~	?	х	
18	Give two examples of technologies that utilise redox reactions	~	?	x	
19	Name one type reaction used to make plastics	~	?	Х	
20	Describe addition polymerisation	✓	?	X	

21	Draw the structure of a polymer given the structure of the monomer	~	?	Х
22	Name a polymer given the name or structure of the monomer	✓	?	х
23	Identify the type of polymerisation used to produce a polymer from the monomer(s) used	~	?	x
24	Give one example of an addition polymer	✓	?	x
25	Explain why fertilisers may be used	√	?	X
26	State the essential elements used in fertilisers	✓	?	х
27	Write the balanced chemical equation for the Haber process	✓	?	х
28	Name the product formed as a result of the Haber process	✓	?	Х
29	State the catalyst used in the Haber process	✓	?	Х
30	List the properties of ammonia	✓	?	х
31	Name the acid that can be produced from ammonia	~	?	х
32	Name the process used to produce nitric acid from ammonia	~	?	х
33	State the catalyst used in the Ostwald process			
34	Give one use of nitric acid	~	?	х
35	Calculate the percentage composition of a fertiliser	~	?	x
36	Describe the effects of radioactive decay on a radioactive element	~	?	х
37	Name the three types of radiation that can be emitted from a radioactive element	~	?	х
38	Describe the properties of different types of radiation including mass, charge and ability to penetrate different materials	~	?	x
39	Identify the type of radiation emitted from a radioactive element	√	?	x
40	Determine the product formed as a result of radioactive emission	√	?	X
41	Write nuclear equations to describe nuclear reactions	√	?	Х
42	State the definition of half-life	√	?	Х
43	Determine the half-life of a radioisotope from a graph	√	?	Х
44	Calculate the number of half-lives	✓	?	X
45	Calculate the proportion of a radioactive isotope that has decayed or remains after half-lives have occurred	~	?	x
46	Give three examples of uses of radioisotopes	✓	?	X

47	Name common lab apparatus for a range of different applications	✓	?	Х
48	Use common lab apparatus as part of a range of different experiments	✓	?	Х

Key Area 3.1 Metals

Properties of metals

- Metals share two main properties
 - 1. They are malleable (can change shape)
 - 2. They conduct electricity
- Metals conduct electricity as they have delocalised electrons, the electrons are free to move
 - \circ the metal atoms form positive metal ions
 - the positive metal ions are electrostatically attracted to the negative electrons
 - \circ the diagram below shows the bonding present in metals

Reactions of metals

- Metals can undergo various reactions to produce new compounds
 - \circ metals can react with oxygen to produce a metal oxide
 - \circ metals can react with water to produce a metal hydroxide and hydrogen
 - metals can react with acid to produce a salt and hydrogen
- When a metal reacts with oxygen a metal oxide is produce
 - A balanced chemical and ionic equation can be written for these reactions
 - For example, the reaction of magnesium with oxygen shown below

lonic equation:

- When a metal reacts with water a metal hydroxide and hydrogen are produced
 - A balanced chemical and ionic equation can be written for these reactions
 - \circ For example, the reaction of potassium with water shown below

Word Equation:		potassium + water — > potassium hydroxide + hydrogen			
Chemical equation:		$K(s) + H_2O(l) \longrightarrow KOH(aq) + H_2(g)$			
Balanced equation:		$2K + 2H_2O \longrightarrow 2KOH + H_2$			
	Potassium is an element. It does not have an ionic formula	Water is made of non-metal elements. It does not have an ionic formula	Potassium hydroxide is an ionic compound. It does have ionic formula	Hydrogen is a diatomic, non-metal element. It does not have an ionic formula	
 Ionic equation: 2K + 2H₂O 2(K⁺)(OH⁻) + H₂ When a metal reacts with dilute acid a salt and hydrogen are produced 					
	 A balanced chemical and ionic equation can be written for these reactions 				

• For example, the reaction of zinc(I) with hydrochloric shown below

Word Equation:	zinc + hydrochloric acid	zinc chloride + hydrogen
Chemical equation:	Zn(s) + HCl(aq)	ZnCl(aq) + H ₂ (g)
Balanced equation:	2Zn + 2HCl ──→	2ZnCl + H ₂
lonic equation:	2Zn + 2HCl	$2(Zn^{+})(Cl^{-}) + H_{2}$

Reactivity Series

Metals can be put in order of reactivity which is shown in the reactivity series

 The reactivity series is detailed below

4		Κ	potassium
		Na	sodium
		Li	lithium
		Ca	calcium
incre	increasing	Mg	magnesium
reactivity		Al	aluminium
		Zn	zinc
		Fe	iron
		Cu	copper
		Ag	silver
		Au	gold

Electrochemical Series

- Metals will lose one or more of their outer electrons to achieve stable electron arrangements
 - \circ $\;$ This results in the formation of positive ions
- Metals can be put in order of how easily they lose electrons, which is shown in the electrochemical series
 - The electrochemical series is shown on page 10 of the databook
 - Metals high up in the electrochemical series are 'good' at losing electrons
 - \circ $\,$ Metals low down in the electrochemical series are 'poor' at losing electrons $\,$

Extraction Methods

- Ores are naturally occurring rocks that contain metals or metal compounds
 - \circ $\,$ The metals must be extracted from the ore before they can be used
- There are three main extraction methods used
 - 1. Heating
 - 2. Heating with carbon
 - 3. Electrolysis
- The method of extraction used is dependent on the reactivity of the metal
 - \circ Metals ions in the ore gain electrons to produce metal atoms during extraction
 - The most appropriate extraction method can be determined using the electrochemical series
 - This is summarised in the diagram below.

Composition of Metal Ores

- It is important to calculate the percentage of a metal in its ore
 - $\circ~$ The percentage of copper in Tenorite (Cu_2O), an ore of copper, can be calculated as shown below

Step 1 Write the molecular formula of the ore Cu_2O

Step 2 Calculate the GFM of the ore	= (2 x Cu) + (1 x O)	
	= (2 x 63.5) + (1x16)	
	= 143g	
Step 3 Percentage mass of copper	= <u>total mass of metal</u> x 100 GFM of ore	
	= <u>(2 x 63.5)</u> x 100 143	
	= 88.9% Copper in Tenorite	

 $\circ~$ The percentage of iron in hematite (Fe_2O_3), an ore of iron, can be calculated as shown below

Step 1 Write the molecular formula of the ore Fe_2O_3

Step 2 Calculate the GFM of the ore	= (2 x Fe) + (3 x O)
	= (2 x 56) + (3x16)
	= 160g
Step 3 Percentage mass of copper	= <u>total mass of metal</u> x 100 GFM of ore
	= <u>(2 x 56)</u> x 100 160
	= 70% Iron in Hematite

Electrochemical Cells

- An electrochemical cell is an arrangement that generates electricity from a chemical reaction
 - Electrochemical cells can be made up of a single cell or two half cells
 - \circ These cells are shown below

Electron Flow

- The electrons in an electrochemical cell flow from one metal to the other
 - \circ $\,$ The directions of electron flow can be determines using the electrochemical series
 - The electrons will always flow from the metal higher in the electrochemical series to the metal that is lower in the electrochemical series
 - For example, when magnesium and copper are used, the electrons will flow from magnesium (higher) to copper (lower)

Voltage

- The voltage produced by an electrochemical cell can be estimated using the electrochemical series
 - When the metals used are far apart in the electrochemical series, the voltage produced is high
 - When the metals used are close together in the electrochemical series, the voltage produced is low
 - For example, magnesium and copper are far apart producing a higher voltage than zinc and magnesium which are closer together in the electrochemical series

Redox

- An electrochemical cell is an example of a redox reaction
 - $\circ~$ A redox reaction involves both a reduction reaction and an oxidation reaction
 - A reduction reaction involves an atom or ion gaining electrons
 - The ion-electron equations for the reduction of different atoms and ions are given in the databook
 - An oxidation reaction involves an atom or ion losing electrons
 - The ion-electron equations for the oxidation of different atoms and ions are the reverse of those given in the databook
 - Oxidation Is Loss Reduction Is Gain (OILRIG)

Example 1: the ion-electron equation for the **reduction** of magnesium ions is shown below

$$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$$

The ion-electron equation for the **oxidation** of magnesium is shown below

$$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-1}$$

Example 2: the ion-electron equation for the reduction of iron ions is shown below

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$

The ion-electron equation for the oxidation of iron is shown below:

$$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$$

• A redox equation for the reaction occurring in an electrochemical cell can be written using the oxidation and reduction equations for the elements present

Step 1 Identify the atom or ion being reduced and the atom or ion being oxidised

- The element higher in the electrochemical series will be oxidised
- The element lower in the electrochemical series will be reduced
- Step 2 Write the reduction equation for the atom or ion being reduced
 - Copy the equation shown for the atom or ion exactly as shown in the databook
- Step 3 Write the oxidation equation for the atom or ion being oxidised
 - Reverse the equation shown for the atom or ion as shown in the databook
- **Step 4** Ensure the oxidation and reduction equations have the same number of electrons
 - An ion-electron equation can be multiplied to ensure the number of electrons being lost is the same as the number being gained
- Step 5 Combine the reduction and oxidation equations
- **Step 6** Rewrite the equation eliminating any spectator ions
 - Remove any ions or electrons that are the same on both sides of the equation
- **Example 1** Write the redox equation for the electrochemical cell shown in the diagram below.

- Step 1tin is lower in the electrochemical series and will be reduced
zinc is higher in the electrochemical series and will be oxidised
- **Step 2** $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$
- **Step 3** $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
- **Step 4** the oxidation and reduction equations have the same number of electrons
- **Step 5** $Zn(s) + Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s) + Zn^{2+}(aq) + 2e^{-}$
- **Step 6** Redox equation: $Zn(s) + Sn^{2+}(aq) \rightarrow Sn(s) + Zn^{2+}(aq)$

Example 2 Write the redox equation for the electrochemical cell shown in the diagram below.

- **Step 1** silver is lower in the electrochemical series and will be reduced aluminium is higher in the electrochemical series and will be oxidised
- **Step 2** $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$
- Step 3 $Al(s) \rightarrow Al^{3+}(aq) + 3e^{-}$

Step 4 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ only has one electron so must be multiplied by 3

 $3Ag^{+}(aq) + 3e^{-} \rightarrow 3Ag(s)$

Step 5 $Al(s) + 3Ag^+(aq) + 3e^- \rightarrow 3Ag(s) + Al^{3+}(aq) + 3e^-$

Step 6 Redox equation: Al (s) + $3Ag^{+}(aq) \rightarrow 3Ag(s) + Al^{3+}(aq)$

Uses of Redox reactions

• Fuel cells and rechargeable batteries are two examples of technologies which utilise redox reactions

Key Area 3.2 Plastics

•

- Plastics are commonly used material to make everyday objects
 - Plastics are long chain molecules that are termed polymers
 - Polymers are molecules that formed from multiple monomer units
 - Monomers are simple molecules that can be bonded together to form a polymer
 - Examples are shown below

- Plastics can be produced by a process termed polymerisation
 - \circ addition polymerisation is used to produce addition polymers

Addition Polymers

- Addition polymers are formed when monomers take part in an addition reaction
 - The monomers must contain a double bond

carbon to carbon double bonds

- \circ $\,$ The monomers bond to create a repeating unit with two carbons
- The monomer molecules bond by the opening of the carbon to carbon double bonds to give a long chain of carbon to carbon single covalent bonds
- \circ $\,$ The reaction of ethene to produce polyethene is shown below

polyethene polymer carbon to carbon single bonds

- The monomer used to create an addition polymer can be identified from the structure of the polymer
 - For example, polyvinylchloride shown below

Key Area 3.3 Fertilisers

- Fertilisers are used to replace essential elements in soil which has been removed by plants
 - Fertilisers are required due to the increase in population requiring more efficient food production
 - The main three elements are nitrogen (N), phosphorus (P) and potassium (K)
- Fertilisers are added to soil, the dissolve in the water present in the soil
 - The elements can then be up taken by plants through the water
 - To allow fertilisers to be used to enhance plant growth they must be soluble in water
- Fertilisers can be natural or synthetic (man-made)
 - Manure and compost are examples of natural fertilisers
 - Ammonium nitrate, potassium nitrate and ammonium phosphate are compounds commonly used in synthetic fertilisers

Manufacture of Fertilisers

- Ammonia and nitric acid are commonly used in the production of fertilisers
 - The Haber process can produce ammonia
 - The Ostwald process can produce nitric acid from ammonia
 - \circ $\,$ Ammonia and nitric acid react to produce ammonium nitrate $\,$
 - This is a neutralisation reaction

The Haber Process

- The Haber process can produce ammonia for use in fertiliser production
 - \circ $\,$ The reactants required are nitrogen and hydrogen gas $\,$
 - The product is ammonia gas
 - This is a reversible reaction

- o Iron pellets are used to catalyse this reaction
- \circ The balanced chemical equation for this reaction is shown below

- Ammonia has a set of distinct properties
 - \circ Ammonia is a colourless gas with a strong, unpleasant smell
 - \circ $\,$ Ammonia is very soluble in water $\,$
 - Ammonia is an alkaline gas

Ostwald Process

- The Ostwald process can produce nitric acid for use in fertiliser production
 - \circ The reactants required are ammonia, water and oxygen
 - The product is nitric acid
 - Platinum is used as a catalyst

Percentage Composition

- The percentage composition of a fertiliser indicates the percentage of each type of element in the fertiliser
- Percentage composition can be calculated using the following steps
 - 1. Write the molecular formula for the fertiliser
 - 2. Calculate the gram formula mass of the fertiliser
 - 3. Write the mass of each element present
 - 4. Calculate the percentage of a specific element by dividing the mass of the element by the gram formula mass of the fertiliser
- For example, the percentage composition of ammonium nitrate is shown below
- **Step 1** ammonium nitrate

	S	NH4	NO ₃	
	V	1	1	
	S	1	1	
	D	1	1	
	F	NH	₄NO3	
Step 2	GFM	= (2xN) + (4x	H) + (3xO)
	GFM	= (2x1	4) + (4	x1) + (3x16)
	GFM	= 80g		
Step 3	2 x	N = 28g	ġ	
	4 x H	l = 4g		
	3 x () = 16g		

Step 4 %N = 28/80 x 100 = 35%

%H = 4/80 x 100 = 5%

%O = 48/80 x 100 = 60%

• The total percentage should always equal 100%

Key Area 3.4 Nuclear Chemistry

- Radiation can be emitted from an unstable atom
 - An atom is unstable when the number of protons and neutrons in the nucleus are not equal
 - \circ The atom emits radiation to become more stable, termed radioactive decay

Types of Radiation

- There are three types of radiation
 - $\circ~$ alpha (particle) represented by α
 - \circ beta (particle) represented by β
 - \circ gamma (wave) represented by γ
- The different types of radiation have different properties
 - Behaviour in an electric field
 - Penetrating power
- When passed through an electric field each type of radiation behaves differently
 - o alpha particles are attracted to the negative plate
 - beta particles are attracted to the positive plate
 - \circ gamma waves are not attracted to the negative or positive plates
 - \circ The diagram below is a visual representation of this information

- Different types of radiation have different abilities to penetrate materials termed their penetration power
 - o alpha has the lowest penetrating power
 - o gamma has the highest penetrating power

 \circ The diagram below is a visual representation of this information

Alpha Radiation

- An alpha particle contains 2 protons and 2 neutrons
 - o alpha particles have a positive charge
 - o alpha particles have a mass of 4 atomic mass units
 - $\circ\;$ an alpha particle is similar to a helium atom and is represented by the nuclide notation shown below

Emitting Alpha Radiation

- When a radioisotope (an unstable atom) emits an alpha particle, the atom must lose two protons and two neutrons
 - \circ $\,$ The mass number of the atom is reduced by 4 $\,$
 - \circ $\,$ The atomic number of the atom is reduced by 2 $\,$
 - \circ This results in the type of atom changing, it becomes a different element
- This information can be shown in the form of an equation
 - $\circ~$ An example of Americium-241 emitting an alpha particle is shown in the equation below

$$^{241}_{95}\text{Am} \longrightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

 $\circ~$ An example of Uranium-238 emitting an alpha particle is shown in the equation below

Beta Radiation

- A beta particle contains 1 electron
 - beta particles have a negative charge
 - \circ beta particles have a mass of 0 atomic mass units
 - $\circ~$ a beta particle is similar to an electron and is represented by the nuclide notation shown below

Emitting Beta Radiation

- When a radioisotope (an unstable atom) emits an alpha particle, the atom must gain a
 proton
 - The mass number of the atom is unchanged
 - The atomic number of the atom is increased by 1
 - \circ This results in the type of atom changing, it becomes a different element
- This information can be shown in the form of an equation
 - $\circ~$ An example of Americium-241 emitting a beta particle is shown in the equation below

 $\circ~$ An example of Uranium-238 emitting a beta particle is shown in the equation below

Half-life of Radioisotopes

The half-life of a radioisotope is the time taken for the sample's activity to fall by half
 The half-life of a radioisotope can be easily calculated

Calculating Half-life

Example 1

Americium-242 has a half-life of 12 hours. A researcher starter with 10g of Americium-242, calculate the mass of Americium-242 remaining after 48 hours.

Step 1 Calculate the number of half-lives

12 hours: 1 half-life

48 hours: (4 x 12 hours)

- : (4 x 1 half-life)
- : 4 half-lives

Step 2 Calculate the mass

Starting mass: 10g

After 1 half-life, the mass will be half the original mass = 10g/2 = 5g

After 2 half-lives, the mass will be half the mass after 1 half-life= 5g/2= 2.5g

After 3 half-lives, the mass will be half the mass after 2 half-lives= 2.5g/2 = 1.25g

After 4 half-lives, the mass will be half the mass after 3 half-lives= 2.5g/2 = 0.625g

Step 3 Final answer

0.625g of Americium-242 would be left after 48 hours

Example 2

A radioisotope has a half-life of 4 days. Calculate the fraction of the radioscope that will remain after 12 days.

Step 1 Calculate the number of half-lives

- 4 days: 1 half-life
- 12 days: (3 x 4 days)
 - : (3 x 1 half-life)
 - : 3 half-lives

Step 2 Calculate the fraction

- After 1 half-life, half the mass will remain= $\frac{1}{2}$
- After 2 half-lives, half the mass after 1 half-life will remain= 1/2 of 1/2 = 1/4
- After 3 half-lives, half the mass after 2 half-lives will remain= 1/2 of 1/4 = 1/8

Step 3 Final Answer

1/8 of the original radioisotope will remain after 12days

Example 3

The mass of a radioisotope falls from 3.8g to 0.475g in 9 hours. Calculate the half-life of this radioisotope.

Step 1 Calculate the number of half-lives

Starting mass: 3.8g

After 1 half-life, the mass will be half the original mass = 3.8g/2 = 1.9g

After 2 half-lives, the mass will be half the mass after 1 half-life= 1.9g/2= 0.95g

After 3 half-lives, the mass will be half the mass after 2 half-lives= 0.95g/2 = 0.475g

Step 2 Calculate time taken

3 half-lives required to reach desired mass of radioisotope

3 half-lives: 9 hours

1 half-life: (9 hours/3 half-lives)

: 3 hours

Step 3 Final Answer

One half-life for the given isotope takes 3 hours

Uses of Radioisotopes

- Radioisotopes have a variety of uses
 - Iodine-131, molybdenum-99 and cobalt-60 can be used in the medical industry
 - Carbon-14 can be used to date materials (carbon dating)

Key Area 3.5 Chemical Analysis

- Identifying common lab apparatus and describing their applications is extremely important
- Some pieces of common lab apparatus are listed below
 - o conical flask
 - \circ beaker
 - o measuring cylinder
 - o delivery tube
 - o dropper
 - test tubes/boiling tubes
 - o funnel
 - o filter paper
 - \circ evaporating basin
 - o pipette with safety filler
 - o burette
 - o thermometer