ISN.uk.net

one (tangent) or no points of intersection.

• $\int ax^n dx = \frac{ax^{n+1}}{n+1} + C$ $n \neq -1$ "raise the power by one, divide by the new power then add C" y = f(x)• The area between the graph y = f(x)and the *x*-axis from x = a to x = b is $\int_{-\infty}^{\infty} f(x) dx$ note: no "+C" Integrate, then sub in (top minus bottom) • If the area is split by the *x*-axis then calculate as 2 separate areas, eg $\int_0^2 f(x) dx$ and $\int_2^5 f(x) dx$ Gives negative area. Ignore sign and add the two • Area enclosed between two graphs y = f(x) and y = g(x)from x = a to x = b is given by y = g(x) $\int_{a}^{b} f(x) - g(x) \, dx, \, f(x) \ge g(x)$ "integrate top curve minus f(x)bottom curve" • If *a* and *b* are not know, they can be calculated by equating two equations. Unit 2 The Circle • The equation of a circle with centre (a, b) and

- radius *r* is $(x-a)^{2} + (y-b)^{2} = r^{2}$
- General equation: $x^2 + y^2 + 2gx + 2fy + c = 0$; centre is (-g, -f), radius is $\sqrt{g^2 + f^2 - c}$
- All of the above is given in the exam
- A circle and line can have two, one (tangent) or no points of intersection. To work this out, substitute equation of line into circle and solve (ie factorise). For tangency, $b^2 - 4ac = 0$ can be used.
- A tangent is a straight line, and y-b=m(x-a)gives its equation. (a, b) will be the point given, and since the tangent is perpendicular to the line from the centre of the circle, use $m_1 \times m_2 = -1$ to find its gradient

Radians

- Radians \rightarrow Degrees:
- Degrees \rightarrow Radians:
- π radians = 180°

$$2\pi = 360^{\circ}$$

$$\frac{\pi}{4} = 45^{\circ}$$

Algebraic Solutions of Trigonometric Equations

- Must use a CAST diagram

- of solutions

3D Trigonometry

Questions in 3D are dealt with in the same way as 2D – usually, SOH CAH TOA or sine/cosine rule is used

Must Know

- Pythagoras's Theorem • SOH CAH TOA
- Sine Rule: $\frac{a}{\sin A}$
- Cosine Rule: a^2
- $\sin^2 x + \cos^2 x =$

Given in Exam

- $\sin(\alpha \pm \beta) = \sin(\alpha \pm \beta)$
- $\cos(\alpha \pm \beta) = \cos(\alpha \pm \beta)$ • $\sin 2\alpha = 2\sin \alpha \cos \alpha$
- $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$
 - - $=2\cos^2\alpha-1$
 - $=1-2\sin^2\alpha$

Trigonometry

Exact Values replace π by 180°, simplify. eg $\frac{\pi}{2} = \frac{180^\circ}{2} = 90^\circ$ $\sqrt{2}$ /45° /45° ÷ by 180, × by π , simplify. eg 45° = $\frac{45\pi}{180} = \frac{\pi}{4}$ $2/30^{\circ}$ $\frac{\pi}{2} = 90^{\circ}$ $\frac{\pi}{3} = 60^{\circ}$ $\frac{3\pi}{4} = 135^{\circ}$ $\frac{\pi}{6} = 30^{\circ}$

• Check inequality to see if answer is in degrees or radians and how many solutions are required eg $0 \le x \le \pi$ or $0 \le x \le 360^{\circ}$ • Remember for $\sin 3x = 0.5$, $0 \le x \le 360^\circ$, there will be 3 pairs

$$\frac{1}{a} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\frac{1}{a} = b^{2} + c^{2} - 2bc \cos A \text{ or } \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\frac{1}{a} \Rightarrow \sin^{2} x = 1 - \cos^{2} x$$

$$\Rightarrow \cos^{2} x = 1 - \sin^{2} x$$

$$\frac{1}{a} \cos \beta \pm \cos \alpha \sin \beta$$

$$\sin \alpha \cos \beta \mp \sin \alpha \sin \beta$$

• Remember: if equations involve a $\sin 2\alpha$ with a $\sin \alpha$, or a $\cos 2\alpha$ with a $\cos \alpha$, it must be substituted using one of the above formulae, before attempting to solve.