Sn.uk.net

Straight Lines Distance Formula

• Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ between (x_1, y_1) and (x_2, y_2)

Midpoint Formula

Gradients

positive negative zero undefined gradient gradient gradient gradient

• Parallel lines have equal gradients

Perpendicular Lines

• $m_1 \times m_2 = -1$ for two lines at right angles, with gradients m_1 and m_2

Equation of a Straight Line

- y-b=m(x-a)
- (a, b) is a point on the line
- *m* is the line's gradient

Intersection of two lines

- Solve simultaneous equations (the equations of the two lines)
- Elimination, equating or substitution

Medians

Notation

• \in – belongs to

Radians

Degrees

- \mathbb{N} natural numbers {1, 2, 3, ...}
- W whole numbers { 0,1, 2, 3, ...}
- \mathbb{Z} integers { ..., -1, 0, 1, 2, ...}
- \mathbb{O} rational integer fractions
- \mathbb{R} real all points on the number line

Graphs of Inverses

- π radians = 180° • Reflect in the line y = x, eg logarithmic and exponential $y = a^x$
 - Radians y = x $\times \frac{180}{}$ (1, a) $y = \log_a x$ (a,1)

Ø

Exact Values

 $\times \frac{\pi}{180}$

Collinearity

- The gradient between two of the points is equal to the gradient between two other points
- They share a common point

not collinear not collinear collinear

Perpendicular Bisectors

- CD is a perpendicular bisector of AB
- CD passes through the
- midpoint of AB Perpendicular bisector of AB
- Point: midpoint of AB
- Gradient: m_{CD}
- $m_{\rm CD} \times m_{\rm AB} = -1$

Functions and Graphs

Composite Functions

- Example $f(x) = x^2 + 1 \qquad f(g(x))$
- g(x) = 3x 4 = f(3x 4) $= q(x^{2}+1)$
 - $=(3x-4)^{2}+1 = 3(x^{2}+1)-4$

Domains

• Set of numbers a function can operate on

Restrictions

- Cannot divide by zero
- Cannot take even roots (eg square root) of negative numbers

Graph Transformations

• Translation: f(x)+a, f(x+a)

decreasing

below x-axis

x-axis

- Reflection: -f(x), f(-x)
- Scaling: kf(x), f(kx)

Unit 1

Sequences

- A linear recurrence relation can be written in the form $u_{n+1} = au_n + b$ or $u_n = au_{n-1} + b$ (both mean exactly the same thing)
- If -1 < a < 1 then a linear recurrence relation will have a limit *l*, which can be calculated using $l = \frac{b}{1-a}$

above

x-axis

Graphs of Derived Functions

- All stationary points increasing
- become roots
- (+ve gradient) • When the graph is increasing, the graph
- of the derivative is
- **above** the *x*-axis
- When the graph is decreasing, the graph
 - of the derivative is **below** the *x*-axis

Higher Mathematics HSN21500

Differentiation **Rules** g(f(x))• If $f(x) = ax^n$ then $f'(x) = anx^{n-1}$ "power multiplies to the front, power lowers by one" Preparing to differentiate • Multiply out brackets • Change roots into powers, eg $\sqrt{x} = x^{\frac{1}{2}}$ • Put all x terms on the top line, eg $\frac{3}{x^2} = 3x^{-2}$ and $\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$ **Rates of Change** • f'(a) is the rate of change of f(x) at x = a. **Equations of Tangents** • A tangent is a straight line – to use y - b = m(x - a) we need a point and a gradient • One coordinate of the point will always be given – the other can be worked out using the given equation • The gradient is a rate of change – differentiate and substitute in *x*-coord. ($\frac{dy}{dx}$ is the equation of the gradient) **Increasing and Decreasing Functions** • $\frac{dy}{dx} > 0$ – increasing, $\frac{dy}{dx} < 0$ – decreasing **Stationary Points** • Occur when f'(x) = 0• Four possibilities for nature (use a nature table): falling point of maximum minimum rising point of turning point turning point inflection inflection **Curve sketching** • Work out x-axis intercepts (roots) – solve $\gamma = 0$ • Work out *y*-axis intercept – find *y* for x = 0• Determine stationary points and their nature (use a nature table) (-ve gradient) / increasing (+ve gradient) Closed Intervals (Restricted Domains) x • Max/min values can occur at stationary points, or end points of the closed interval **Optimisation** above

- Problems usually involve finding max/min areas and volumes
- Calculate a stationary point (f'(x) = 0) and determine its nature (use a nature table)