Barrhead High School Mathematics Department

National 5 Mathematics

Learning Intentions \& Success Criteria: Assessing My Progress

Expressions \& Formulae			
Topic	Learning Intention	Success Criteria	I understand this...
Approximation \& Estimation	- Pupils should be able to accurately round numbers to a suitable degree of accuracy. - Pupils should be able to estimate the answer to a calculation by rounding.	- I can round to the nearest $10,100,1000$ etc - I can round to n decimal places. - I understand what is meant by the term "significant figure". - I can round to a given number of significant figures. - I can choose a suitable degree of accuracy depending on the context of the problem - I can estimate an answer by rounding.	(3) (:) (2) (3) (3) (:) (3) (:) : (:) (:) : (:) (:) (:) (:) (:) :

Surds \& Indices	- Pupils will be able to recognise rational and irrational numbers. - Pupils will be able to simplify expressions involving surds and indices. - Pupils will be able to rationalise a surd. - Pupils will be able to express a number in scientific notation (standard form). - Pupils will be able to find the reciprocal of a^{m}. - Pupils will be able to evaluate expressions involving fractional indices and nth roots.	- I can state the definition of a rational number. - I can state the definition of an irrational number. - I can identify rational and irrational numbers. - I can simplify an expression involving surds by breaking it into a product of factors. - I can identify square numbers and find their square roots. - I can multiply, divide, add and subtract surds. - I can evaluate a number to a given power. - I can find the nth root of a number. - I can multiply like terms involving indices by adding their powers. - I can divide like terms involving indices by subtracting their powers. - I can raise a power to a power by multiplying the indices. - I know that any term raised to the power of 0 equals 1. - I know that any term raised to the power of 1 equals the same term. - I can state the definition of a reciprocal. - I can work with negative indices. - I can write a very large or very small number using scientific notation (standard form). - I can change between fractional indices and roots. - I can evaluate terms with a fractional index or nth root. - I will know where exact values are necessary to use in real life situations.	(3) (3) (:3) (:) (3) (:) : (:3) (:) (3) (3) : (3) (2) (3) (2) (3) (3) (3) (3) (다) (:) (3) (:) (2) (ㅇㅇㅇㅇ앙 (:3) (:) (:3) (:) (:) () ($:$ (3) () (2) (:) (ㅇ) (:) (:) (:) (:) (:) (:)
Algebraic Expressions \& Algebraic Fractions	- Pupils will be able to simplify algebraic expressions by	- I can simplify an algebraic expression by collecting like terms.	

expanding brackets.

- Pupils will be able to factorise an algebraic expression.
- Pupils will be able to express a quadratic in the form ($\mathrm{x} \pm$ a) ${ }^{2} \pm b$.
- Pupils will be able to simplify an algebraic fraction.
- Pupils will be able to add, subtract, multiply and divide algebraic fractions.
- I can expand a multiply a single numerical or algebraic term through a bracket.
- I can expand an algebraic expression in the form $(x \pm a)(x \pm b)$.
- I can factorise an algebraic expression by finding a common factor.
- I can factorise a quadratic expression using a difference of two squares.
- I can factorise a quadratic expression into the form $(x \pm a)(x \pm b)$.
- I can factorise a quadratic expression with the x^{2} coefficient > 1 into the form ($a x \pm b$) ($c x \pm d$).
- I can complete the square to express a quadratic in the form $(x \pm a)^{2} \pm b$.
- I can simplify an algebraic fraction by finding the highest common factor of the numerator and the denominator.
- I can add and subtract algebraic fraction by finding a common denominator.
- I can multiply algebraic fractions.
- I can divide algebraic fractions by multiplying by the reciprocal.
(8) 8

Gradient of a Straight Line	- Pupils will be able to calculate the gradient of a straight line. - Pupils will be able to apply their knowledge of gradient to distance, speed \& time graphs.	- I can identify a positive, negative, zero and undefined gradient. - I can calculate the gradient of a straight line by examining the change in the x direction and the change in the y direction. - I can calculate the gradient of a straight line using the formula $m=\frac{y_{2}-y_{2}}{x_{2}-x_{1}}$. - I can calculate the gradient of a straight line given a diagram. - I can calculate the gradient of a straight line given two co-ordinates. - I can use my knowledge of the gradient of a straight line to calculate speed on a distance-time graph. - I can use my knowledge of the gradient of a straight line to calculate acceleration on a speed - time graph. - I will understand what is meant by the term "rate of change". - I will be able to find the gradient of a line parallel to the given line.	(-) (\%)
			(-) (\%) 8
			(-) (8)
			(-) (\%)
			(-) (\%)
			(3) (9) 8
			(3) (9) 8
			(3) (\%) 8
			(3) (9) 8

- Pupils will be able to calculate the length of a major or minor arc of a sector, given the radius and the angle at the centre.
- Pupils will be able to calculate the angle at the centre of a major or minor sector, given the radius and the length of the arc.
- Pupils will be able to calculate the radius of a major or minor sector, given the angle at the centre and the length of the arc.
- Pupils will be able to calculate the area of a major or minor sector, given the radius and the angle at the centre.
- Pupils will be able to calculate the angle at the centre of a major or minor sector, given the radius and area of the sector.
- I can identify parts of a circle.
- I can identify a minor and major sector/arc.
- I can calculate the length of an arc, given the radius and angle at the centre.
- I can calculate the angle at the centre of a sector, given the radius and length of the arc.
- I can calculate the length of a radius, given the length of the arc and angle at the centre.
- I calculate the area of a sector, given the radius and angle at the centre.
- I can calculate the angle at the centre of a sector, given the radius and area of the sector.
- I can calculate the radius, given the area of the sector and the angle at the centre.
- I understand what is meant by the term "compound shape".
- I can find the area of a compound shape involving sectors of circles.
- I understand how arcs and sectors play a very important role in design and manufacture process.() (:)
(ㄷ) (:) (8)(8) 8

	- Pupils will be able to calculate the radius of a major or minor sector, given the area and the angle at the centre. - Pupils will be able to apply their knowledge of finding the area of a sector to find the area of a compound shape.		
Volume of Solids	- Pupils will be able to identify a range of 3D solids. - Pupils will be able to find the volume of a simple 3D solid. - Pupils will be able to find the volume of a compound 3D solid.	- I can identify a range of 3D solids and state some of their properties. - I understand what is meant by the term "compound shape". - I can calculate the volume of a: - Cube - Cuboid - Cylinder - Sphere - Cone - Prism - I can apply my knowledge of calculating the volume of simple shapes to problems involving compound shapes.	

Relationships			
Topic	Learning Intention	Success Criteria	I understand this...
Straight Line Graphs	- Pupils will be able to sketch a straight line graph using a table of values. - Pupils will be able to find the gradient and y intercept of a straight line graph and hence find the equation. - Pupils will be able to find the equation of vertical and horizontal lines. - Pupils will be able to re-arrange an equation into the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. - Pupils will be able to express a straight line graph using function notation.	- I can find the gradient of a straight line graph using the formula $m=\frac{y_{2}-y_{2}}{x_{2}-x_{1}}$. - I can use a table of values to find co-ordinates that lie on a straight line. - I can sketch a straight line graph using a table of values. - I can recognise horizontal and vertical lines and can state their equations. - I can determine the equation of a straight line graph given its gradient and y intercept. - I can determine the equation of a straight line graph given its gradient and one point on the line. - I can recognise the general form of a straight line equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and can re-arrange it into the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. - I understand what is meant by "function notation" and can write straight line equations in this way.	(ㄷ) (ㄹ) (2) (ㄷ) (ㄹ) (2) (아 (3) (3) (3) (3) (:) (도 (ㄹ) (:) (ㄷ) (아 (:) (ㄷ) (ㄹ) (8) (:) (:) (:)
Equations \& Inequalities	- Pupils will be able to solve a linear equation or inequality using algebraic manipulation.	- I can use mathematical notation to say that one quantity is equal to, less than, less than or equal to, greater than and greater than or equal to another. - I can solve a simple two step equation or inequality or inequality by balancing both sides. - I can solve an equation or inequality involving brackets. - I can solve an equation or inequality where unknowns appear on either side.	(아) (ㅇㅇ (:) (ㄷ) (ㄹ) (3) (다 (ㄹ) (3) (다) (3) (:)

Simultaneous Equations	- Pupils will be able to use graphs to solve simultaneous equations. - Pupils will be able to use an algebraic method to solve simultaneous equations.	- I understand that simultaneous equations only have one unique solution. - I can solve simultaneous equations by drawing the straight line graphs and finding the point of intersection. - I understand that a set of simultaneous equations may have no solution and can demonstrate this by sketching the graphs. - I can use the process of elimination to solve simultaneous equations with one term having a unitary coefficient. - I can use the process of elimination to solve simultaneous equations with both terms having a co-efficient not equal to 1. - I can use the process of substitution to solve simultaneous equations. - I can use simultaneous equations to model a situation.	(3) (ㄹ) (:) (:) () (:) (:) (:) (:) (3) (ㄹ) (2) (3) (ㅇ) (:) (3) () (:) (3) (ㄹ) (:)
Formulae	- Pupils will be able to evaluate a formula using substitution. - Pupils will be able to rearrange a formula.	- I can distinguish between an algebraic expression and a formula. - I can use formulae to model a real life situation. - I can evaluate a formulae using substitution. - I can change the subject of a formula by using inverse operations. - I can solve problems involving rearranging a formula.	
Graphs of Quadratic Functions	- Pupils will be able to identify and sketch graphs of quadratic functions.	- I can sketch a quadratic graph using a table of values. - I can transform a quadratic graph by stretching it and translating it both vertically and horizontally. - I can identify the turning point of a quadratic graph and determine its nature.	

	- Pupils will be able to determine the equation of a quadratic graph. - Pupils will be able to recognise and apply transformations to quadratic graphs. - Pupils will be able to find the turning point of a quadratic graph. - Pupils will be able to complete the square.	- I can complete the square on a quadratic graph and identify the co-ordinates of the turning point. - I can find the axis of symmetry of a quadratic graph. - I can find the equation of a quadratic graph in the forms $y=(x-a)(x-b)$.	
Quadratic Equations	- Pupils will be able to solve quadratic equations graphically. - Pupils will be able to solve quadratic equations by factorising. - Pupils will be able to solve quadratic equations using the quadratic formula. - Pupils will be able to use the discriminant to find the nature of the roots or a quadratic. - Pupils will be able to apply their knowledge of quadratic equations to a variety of real life contexts.	- I can sketch a quadratic graph and using a table of values and use this to solve the quadratic equation. - I can solve a quadratic equation by factorising. - I can use the quadratic formula to solve a quadratic equation. - I can determine the nature of the roots of a quadratic by using the discriminant. - I can use quadratic equations to model real life situations and hence find maximum and minimum values.	(8) (9) (8) (3) (:) (8) (3) (8) (8) (8) (9) (8) (3) (8) (8)

Pythagoras' Theorem	- Pupils will be able to use Pythagoras' Theorem to find the length of a missing side in a right angled triangle. - Pupils will be able to use the converse of Pythagoras' Theorem to decide if a triangle is right angled or not. - Pupils will be able to apply Pythagoras' Theorem to problems in 3 dimensions.	- I can square and square root numbers. - I can state and apply Pythagoras' Theorem to find the length of the hypotenuse. - I can state and apply Pythagoras' Theorem to find the length of a shorter side. - I can use the converse of Pythagoras' Theorem to prove whether a triangle is right angled or not. - I can identify right angled triangles in 3 dimensional shapes. - I can apply Pythagoras' Theorem to a variety of problems in 3 dimensions.	(3) (3) (8) (3) (8) (8) (3) (3) (8) (-) (:) (8) (8) (:) (8) (8) (8) (8)
Properties of Shapes	- Pupils will be able to identify types of triangle. - Pupils will be able to use triangle properties to calculate missing angles. - Pupils will be able to state the properties of a variety of quadrilaterals and use their properties to calculate missing sides and angles. - Pupils will know the properties of parallel lines and associated angles.	- I can name and describe a range of triangles including: Acute angled Obtuse angled Right angled Scalene Isosceles Equilateral - I can calculate an exterior angle in a triangle given its supplementary interior angle. - I can calculate an interior angle in a triangle given its supplementary exterior angle. - I can state the properties of a range of quadrilaterals: - Square - Rectangle - Parallelogram - Rhombus - Trapezium - Kite	

- Pupils will be able to find interior and exterior angles for regular and irregular polygons.
- Pupils will be able to describe all parts of a circle and use triangle properties within a circle.
- I can identify and calculate corresponding angles.
- I can identify and calculate alternate angles.
- I can identify and calculate allied angles.
- I can calculate an exterior angle in a polygon given its supplementary interior angle.
- I can calculate an interior angle in a polygon given its supplementary exterior angle.
- I can calculate the sum of the interior angles in a polygon.
- I can calculate the sum of the exterior angles in a polygon.
- I can find the number of sides in a regular polygon given its exterior angle.
- I can cover an area by tessellating shapes
- I can name and describe a range of parts of a circle
- Circumference
- Diameter
- Radius
- Arc
- Chord
- Segment
- Sector
- Tangent
- I can construct a right angled triangle inside a circle or semi-circle.
- I know that a tangent meets a circle at only one point and is perpendicular to the radius.
- I can identify the perpendicular bisector of a chord and use this to create a right angled triangle.
- I can apply my knowledge of circles to a variety of real life contexts.

Similarity	- Pupils will be able to use a scale factor to enlarge or reduce a length, area or volume.	- I can identify a linear scale factor and use it to calculate a missing length in an enlargement or reduction. - I can identify an area scale factor and use it to calculate a missing length or area in an enlargement or reduction. - I can identify a volume scale factor and use it to calculate a missing length or volume in an enlargement or reduction.	
Trigonometric Functions	- Pupils will be able to find the sine, cosine or tangent of any angle. - Pupils will be able to sketch trigonometric graphs. - Pupils will be able to apply a variety of transformations to trigonometric graphs. - Pupils will be able to find the equation of a trigonometric graph. - Pupils will be able to solve trigonometric equations. - Pupils will be able to identify and apply trigonometric identities to simplify expressions.	- I can use a calculator to find the sine, cosine or tangent of any angle. - I can accurately sketch the graphs of $\sin x, \cos x$ and $\tan x$. - I can give the definition of the period and amplitude of a trigonometric function. - I can transform a trigonometric graph by stretching it vertically and horizontally, by moving it left to right and by moving it up and down. - I can solve a trigonometric equation and find all solutions. - I can use trigonometric identities: - $\tan x=\frac{\sin x}{\cos x}$ - $\sin ^{2} x+\cos ^{2} x=1$ to simplify expressions.	(3) (ㅇ) (:) (3) (:) (:) (:) () (2) (:) (ㄹ) (2) (3) (ㄹ) (:) (3) (ㄹ) (:)

Applications			
Topic	Learning Intention	Success Criteria	I understand this...
Trigonometry	- Pupils should be able to calculate the area of a non-right angled triangle. - Pupils should be able to find the length of a missing length in any triangle. - Pupils should be able to calculate a missing angle in any triangle. - Pupils should be able to apply their knowledge of triangles and trigonometry to solve problems including bearings.	- I understand that trigonometry deals with the ratio of sides in triangles. - I can calculate the area of a triangle given the length of two sides and an angle. - I can use the sine rule to calculate the length of a missing side in a non right angled triangle. - I can use the sine rule to calculate the size of an angle in a no right angled triangle. - I can use the cosine rule to calculate the length of a missing side in a non right angled triangle. - I can use the cosine rule to calculate the size of an angle in a no right angled triangle. - I can use three figure bearings to describe direction. - I can accurately measure and sketch a bearing. - I can use information given to determine whether an angle is acute or obtuse.	(:) (:) : (ㄹ) (ㅇ) : (:) (:) : (:) () :
Vectors \& 3D Coordinates	- Pupils will be able to use vectors to describe force and direction. - Pupils will be able to use co-ordinates and vectors in three dimensions.	- I understand that a vector has both direction and size magnitude. - I understand that a scalar has no direction. - I can express a vector using column notation. - I can express a vector using a directed line segment. - I can sketch a vector given its components.	

		- I understand that vectors are equal if they have the same magnitude and direction. - I can multiply a vector by a scalar and understand how the vector changes. - I understand that the negative of any vector changes its direction. - I can calculate the magnitude of a vector. - I can find a resultant vector by adding vectors. - I can sketch a diagram to illustrate vector addition. - I can use three dimensional co-ordinated to describe a point in space.	(3) (:) (:) (3) (ㅇ) (:) (3) () (:) (:) (:) (:) (:) (:) (2) (:) () (2) (3) (:) (:)
Percentages	- Pupils will be able to accurately work with percentages in a variety of contexts.	- I can find a percentage of a quantity. - I can find the original value of one quantity given its increased/decreased value. (Reverse Percentages) - I can calculate simple interest. - I can calculate compound interest. - I know the definitions of "appreciation" and "depreciation" and know how to calculate these.	(8) (8) (8) (3) (:) (8) (-) (:) (8) (3) (8) 8 (3) (:) (8)
Fractions	- Pupils will be able to apply the four basic operations to fractions. - Pupils will be able to use fractions in a variety of contexts. - Pupils will be able to express fractions in equivalent forms.	- I can identify the numerator and denominator of a fraction. - I can find an equivalent fraction. - I can simplify a fraction. - I can write a mixed number fraction as an improper fraction. - I can write an improper fraction as a mixed number fraction.	(-) (8) (8) (:) (8) (3) (8) 8 (3) (8) 8 (3) (:) (8)

		- I can find a fraction of a quantity. - I can find the reciprocal of a fraction. - I can add, subtract, multiply and divide fractions	
Distributions	- Pupils will be able to use statistical analysis to compare distributions and data sets. - Pupils will be able to illustrate a data set using a box plot.	- I can calculate the range of a data set. - I can calculate the mean, median and mode of a data set. - I understand that mean, median and mode are all types of averages and know which one is best to use in certain situations. - I can calculate a five figure summary of a data set - lowest, highest and quartiles. - I can calculate the interquartile range and semiinterquartile range of a data set. - I can illustrate a five figure summary on a box plot. - I can compare two or more distributions using box plots and can make valid statements about all. - I understand that the standard deviation of a data set gives an idea of how spread out the data set is. - I can calculate the standard deviation of a data set.	(-) (:) (8) (9) (8) (3) (3) (8) (8) (9) (8) (8) (9) (8) (-) (8) © (3) (9) (8) (-) (9) © (-) (:) ©
Scatter Graphs	- Pupils will be able to interpret a scatter graph. - Pupils will be able to identify correlation.	- I can accurately plot a scatter graph. - I can interpret a scatter graph to determine required information. - I can identify the three types of correlation by examining a scatter graph.	

	- Pupils will be able to draw a best fitting line and determine its equation.	- I can draw a line of best fit on a scatter graph. - I understand that a line of best fit identifies the trend of the data. - I can determine the equation of a line of best fit. - I can estimate a value from one data set when the corresponding data is given.	

