General Mathematics - Practice Examination C Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - General Level

Time Allowed - 1 hour 30 minutes

First name and initials
\square
Class

Teacher
\square

Read Carefully

1. Answer as many questions as you can.
2. Write your answers in the spaces provided
3. Full credit will be given only where the solution contains appropriate working.
4. You may use a calculator

FORMULAE LIST

Circumference of a circle:

$$
C=\pi d
$$

Area of a circle:
$\boldsymbol{A}=\pi \boldsymbol{r}^{2}$
Curved surface area of a cylinder:
Volume of a cylinder:
$A=2 \pi r h$
$V=\pi r^{2} \boldsymbol{h}$
Volume of a triangular prism:
$\boldsymbol{V}=\boldsymbol{A} \boldsymbol{h}$

Theorem of Pythagoras:

Trigonometrical ratios in a right angled triangle:

$$
\begin{aligned}
& \tan x^{o}=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin x^{o}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos x^{o}=\frac{\text { adjacent }}{\text { hypotenuse }}
\end{aligned}
$$

Gradient:

$$
\text { Gradient }=\frac{\text { vertical height }}{\text { horizontal distance }}
$$

1. A certain form of bacteria, when examined under a microscope, is found to be 0.0012 cm in length.
Write this number in scientific notation.
(2)
2. The table below shows the temperatures in 5 British cities on January $4^{\text {th }} 1998$ at 9 am.

City	Temperature
Aberdeen	$-5^{\circ} \mathrm{C}$
Cardiff	$1^{\circ} \mathrm{C}$
Glasgow	$-1^{\circ} \mathrm{C}$
London	$4^{\circ} \mathrm{C}$
Manchester	$2^{\circ} \mathrm{C}$

(a) By how many degrees was London warmer than Glasgow?
(b) By noon on January $4^{\text {th }}$ the temperature in Glasgow had risen by $9^{\circ} \mathrm{C}$. What was the noon temperature in Glasgow?
(1)
3. Maggie earns a salary of $£ 12,600$ per year.

She is told that she will be receiving a salary increase of 7%.
(a) Calculate Maggie's new salary.
(3)
(b) Maggie is paid monthly and when she receives her wageslip she sees that her gross monthly pay is $£ 1062$

Has Maggie been paid correctly?
You must give a reason for your answer.
4. (a) On the grid below, plot the following points and join them up to form a triangle.
(2)

$$
P(3,2) \quad Q(3,-3) \quad R(-2,-3)
$$

(b) Calculate the length of side PR.
(3)
5. Solve algebraically

$$
5 x-4=2 x+20
$$

(3)
6. The diagram shown is of a new design for a bedspread. For each bedspread, a diamond is cut out of a plain sheet of cloth and patterned material is sewn in its place.
(a) Calculate the area of the diamond.

260 cm

(b) Calculate the area of plain cloth remaining after the diamond has been removed.
(c) What percentage of the bedspread is plain material?
7. Simplify :-
(a)

$$
4 a+6(5-a)-20
$$

(3)
(b) $\quad 3 b(b-2)$
(2)
8. Complete the diagram below, by reflecting the flag in the dotted lines of symmetry.

9. In the diagram below CB is a tangent to the circle.

Angle OAB is 50° and the line OC is parallel to AB .
Calculate the size of the angle x.
(3)

10. While on holiday Paul decides to calculate the height of his hotel.

He draws a sketch to help him.

Paul positions himself 3.4 metres away from a marked spot on the ground and he measures his own height to be 160 centimetres.

The hotel is 102 metres from the spot on the ground.

Assuming Paul uses a method involving similar triangles, what height will he calculate the hotel to be ?
You must not use a scale drawing.
(4)
11. A painter and decorator knows that he needs 42 litres of paint to paint a room.

He must use a mixture of blue and red paint in the ratio $3: 4$.
How many litres of red paint will the painter need?
12. The distance time graph shows details of a coach journey on a weekend outing.

Time (hours)
(a) How far did the coach travel before it stopped for the first time?
(1)
(b) Calculate the total driving time for the driver ?
(2)
(c) Hence calculate the average speed of the coach for the whole journey, giving your answer in miles per hour. (do not include the stops).
(3)

KU	RA

13.

The doormat shown above is made up from a rectangle and two semi circles.
(a) A coloured border is to be put around the edge of the mat without any overlap.

Calculate the length of piping required for the border.
(b) Calculate the area of the mat in square metres.
(c) If the material used to make the mat costs $£ 3.40$ per square metre, and the coloured edging costs 90 p per metre, find the total cost of making the mat.
14. An engineer planning a new suspension bridge decides to use the following design for the sides.

The side of the bridge is made up of steel hexagon shapes with bolts to hold them together.
The number of bolts needed depends on the number of hexagons used.
(a) Complete the table to help the engineer plan the bridge.
(3)

Number of hexagons (\boldsymbol{h})	1	2	3	4	5		10
Number of bolts (\boldsymbol{B})	6	11					

(b) Find a formula connecting the number of hexagons (h) with the number of bolts (B).
(2)
(c) Is it possible for the engineer to build the bridge using 120 bolts?

You must explain your answer with appropriate working.
15. Barry needs new glasses.

He has seen a pair of frames that he likes in three different opticians.
Barry must also have an eye test which normally costs $£ 12$.

Obviously Barry wants the cheapest deal.
Which Opticians should Barry choose?
Your answer must be accompanied with the appropriate working.
16. A skateboard ramp has been designed to have the following dimensions :-

The ramp can only be used in competitions if the angle marked x is between 20 and 30 degrees.

Can this ramp be used in a competition?
You must show all your working.

General Mathematics - Practice Exam C

1.

$\underline{1.2 \times 10^{-3}}$

Marking Scheme

$$
\square
$$

(1) for number
(1) for power of 10
[2 marks KU]
2.
(a) For $\begin{aligned} & 4-(-1) \\ & \underline{\mathbf{5}^{\circ} \mathbf{C}}\end{aligned}$
(1)
(b) For $-1+9$

$$
\begin{equation*}
=\underline{8^{\circ} \mathrm{C}} \tag{1}
\end{equation*}
$$

[2 marks KU]
3.
(a) For $0.07 \times £ 12600$
$=£ 882$

$$
\begin{align*}
& £ 882+£ 12600 \\
& =\underline{£ 13482} \tag{1}
\end{align*}
$$

(1)
[3 marks KU]
(b) $\quad \begin{aligned} & £ 1062 \times 12 \\ & =£ 12744\end{aligned}$
(1) for multiplying by 12
(or $£ 13482 \div 12$ etc.)
(1)

No. Maggie has been underpaid by $£ 738$ per year.
(or $£ 61.50$ per month)
4. (a) For plotting points

For joining points
(1)
(b) For $\mathrm{PR}^{2}=5^{2}+5^{2}$
(1)
$=50$
PR $=\mathbf{7 . 1}$
(1)
$\underline{\mathrm{PR}=7.1}$
(1) (any rounding ok)
[5 marks KU]
5.

$$
\begin{array}{cc}
\text { For } \quad & 3 x-4=20 \\
& 3 x=24 \\
& \underline{x}=\mathbf{8}
\end{array}
$$

(1)
.......... (1)
.......... (1) [3 marks KU]
6. (a) For $\frac{1}{2} \times 112 \times 260$

$$
=\underline{14560}^{\mathrm{cm}^{2}}
$$

(2) (or equivalent)
.......... (1)
[3 marks KU]
(b) $\quad \mathrm{A}_{\text {rec }}=160 \times 260=41600 \mathrm{~cm}^{2}$ \qquad
$\mathrm{A}_{\text {Plain }}=41600-14560$
$=\underline{\mathbf{2 7 0 4 0} \mathrm{cm}^{2}}$
[2 marks RA]
(c) $\frac{27040}{41600} \times 100$
$=65 \%$
\qquad (2)
7.
(a) For $4 a+30-6 a-20$
(1)
$10-2 a$
(1) For -2 a
(1) For 10
(b) For $\mathbf{3 b}^{\mathbf{2}}-\mathbf{6} \boldsymbol{\sigma}$
(1) For $3 b^{2}$
(1) For $-6 b$
[5 marks KU]
8.

.......... (3)
(1 mark for each correct quadrant)
[3 marks KU]
9. For $\angle \mathrm{OBA}=50^{\circ}$
$\angle \mathrm{BOC}=50^{\circ}$
(1)
$x=40^{\circ}$
[3 marks KU]
10. For knowing to change 160 cm into 1.6 m
scale factor $=\frac{102}{3 \cdot 4}=30$
(2) (pupils may use equal fractions)

Hotel $=30 \times 1.6$
$=\underline{48 \text { metres }}$
[4 marks KU]
11. For total parts $=7$

Red $=\frac{4}{7}$ of 42
(1)
$=6 \times 4=\underline{\mathbf{2 4}}$
(1) Award mark for $\frac{4}{7}$
.......... (1) For ans 24
[3 marks RA]
12.
(a) 40 miles
(1)
[1 mark KU]
(b) $1 \mathrm{hr}+1.5 \mathrm{hr}+45 \mathrm{mins}$
(1)
$=3 \mathrm{hrs} 15 \mathrm{mins}$
or 3.25 hrs
(1)
[2 marks RA]
(c) $\mathrm{S}=\frac{D}{T}=\frac{160}{3.25}$ \qquad (1) For formula
$=49.2 \mathrm{mph}$
(1) For working
(1)
[3 marks KU]
13.
(a) $\mathrm{C}=\pi \mathrm{d}=\pi \times 50$
$\mathrm{C}=157 \mathrm{~cm}$

Perimeter $=80+80+157$
$=\underline{\mathbf{3 1 7} \mathrm{cm}}$
(b) $\mathrm{r}=25 \mathrm{~cm}=0.25 \mathrm{~m}$
$\mathrm{A}_{\text {circle }}=\pi \mathrm{r}^{2}=\pi \times 0.25^{2}$
$=0.2 \mathrm{~m}^{2} \quad(0.196)$
$\mathrm{A}_{\text {rec tan gle }}=0.8 \times 0.5=0.4$
$\mathrm{A}_{\text {total }}=0.4+0.2 \approx \underline{0.6 \mathrm{~m}^{2}}$
(c) For using 3.17 metres

For $3.17 \times 0.90=£ 2.85$
For $0 \cdot 6 \times 3.40=£ 2.04$
For final answer £4.89
(1)
14.

(a) | l_{1} | 1 | 7 | 2 | 4 | 5 | | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | 6 | 11 | $\mathbf{1 6}$ | $\mathbf{2 1}$ | $\mathbf{2 6}$ | | $\mathbf{5 1}$ |

(2) for $16,21,26$
(1) for 51
[3 marks KU]
(b) $\quad \underline{B=5 h+1}$
[2 marks RA]
(c) $120=5 h+1$
$5 h=119$
(1)
$h=23.8 \quad$ no it is not possible.
(1)
[3 marks RA]
15.

Specs R Us	$\begin{align*} & £ 120+£ 12 \\ & =\mathbf{£ 1 3 2} \tag{1} \end{align*}$
Spec Express	£130
Vision Direct	20\% of $£ 110$
	$=£ 22$
	frames $=£ 88$ $88+26+12$
	$88+26+12$
	= £126

So Vision Direct is the cheapest
(1)
(1)
[6 marks RA]
16. For knowing to use tan

$$
\begin{align*}
\tan x & =\frac{7}{15} \approx 0.47 \tag{1}\\
x & =25.2^{\circ}
\end{align*}
$$

Yes the ramp can be used. (1)
frames $=£ 88$
\qquad

Yest

