Credit Mathematics - Practice Examination G

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated. Calculators may only be used in Paper 2.

MATHEMATICS Standard Grade - Credit Level

Paper I

Time allowed - 55 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may not use a calculator
4. Evaluate $4 \cdot 2+4 \cdot 5 \div 0 \cdot 5$.
5. Evaluate $2 \frac{2}{3} \div 1 \frac{3}{4}$.
6. Solve the inequality $4-2(3 x-4) \geq 1-3 x$, where x is a whole number.
7. Evaluate $\frac{a^{2}-2 b c}{c}$ when $a=-6, b=4, c=-2$.
8. (a) Factorise $2 x^{2}+5 x-12$.
(b) Hence, simplify the fraction $\frac{x^{2}-16}{2 x^{2}+5 x-12}$.
9.

The diagram shows the graph of $y=a \cos b x^{0}, 0 \leq x \leq 360$.
Find the values of a and b.
7. Triangles PQR and RST, with some of their measurements, are shown in the diagram opposite.

PQ is parallel to TS.
Calculate the length of TQ .

(a) Find the equation of the line in terms of \boldsymbol{p} and \boldsymbol{q}.
(b) Does the point $\mathrm{A}(4,12)$ lie above or below the line?

Give a reason for your answer.
9. Two adults and three children pay $£ 17.40$ for admission to their local school concert.

One adult and two children pay $£ 10.20$ for admission to the same concert.
How much would 3 adults and 1 child have to pay to be admitted to the concert ?

Draw an appropriate statistical diagram to illustrate this information

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: $13.2 \quad 2 \mathrm{KU}$ -1 know order of calculations - 2 carry out calculations	- $1 \quad 4 \cdot 5 \div 0 \cdot 5=9$ - 2 answer
2.	ans: $\frac{32}{21}$ or $1 \frac{11}{21}$ 2 KU - 1 changing to improper fractions and changing to multiplication -2 evaluate	$\begin{array}{ll}\text { - } & 1 \\ \text { - } 2 & \frac{8}{3} \times \frac{4}{7} \\ \text { answer }\end{array}$
3.	ans: $0,1,2,3$ -1 removing brackets - 2 collecting like terms - 3 solving inequation -4 stating solution	- $1 \quad 4-6 x+8 \geq 1-3 x$ - $2 \quad-3 x \geq-11$ - $3 x \leq \frac{11}{3}$ - 4 answer
4.	ans -26 2KU -1 correctly substituting -2 evaluate expression	- $1 \frac{36+16}{-2}$ - 2 answer
5.	(a) ans: $(2 x-3)(x+4)$ - $1 \& 2$ factorising correctly (b) ans: $\frac{x-4}{2 x-3} \quad \mathbf{2 K U}$ -1 factorising numerator -2 simplifying fraction	- $1(2 x-3)$ - $2(x+4)$ - $1(x+4)(x-4)$ - 2 answer
6.	ans: $a=0.5, b=2$ $2 \mathrm{KU}$ -1 recognizing max/min - 2 recognizing period	- $1 \quad a=0.5$ - $2 b=2$

Credit Mathematics - Practice Examination G

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated. Calculators may be used in this paper.

MATHEMATICS Standard Grade - Credit Level

Paper II

Time allowed - 80 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

Standard Deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$

1. The circumference of the earth is approximately $4.01 \times 10^{4} \mathrm{~km}$.

Calculate, correct to three significant figures, the radius of the earth, expressing your answer in standard form.
2. House prices are predicted to rise approximately $2 \cdot 5 \%$ per year, for the next few years.
A cottage bought in January 2002 cost $£ 87000$.
How much, to the nearest $£$, would the same cottage be worth in January 2005 ?
3. Solve the equation

$$
2 x^{2}+4 x-3=0 .
$$

Give your answers correct to $\mathbf{1}$ decimal place.
4. Primary 7 are making medieval hats as part of their History project.
A few of the girls decide to make a hat like the one shown, which consists of a cone shaped body made of card with a ribbon attatched to the top.

The sector of card used to make the cone is cut from a square piece of card of side 40 cm as shown.

If the angle at the centre of the sector is 250°, calculate the percentage of card wasted, to the nearest percent.

5. Solve, algebraically, the equation

$$
5 \cos x^{0}+3=0, \text { for } 0 \leq x<360
$$

6. In the triangular shaped swimming pool shown below a swimmer dives in at A and swims directly to the opposite side BC. Angle $\mathrm{ABC}=37^{\circ}$ and angle $\mathrm{BCA}=66^{\circ}$. The length of BC is $34 \cdot 1$ metres.

Calculate, correct to three significant figures, the shortest possible distance the swimmer has to cover.
7. (a) Express $\frac{6 x}{y(x-2 y)}-\frac{6}{y}$ as a single fraction in its simplest form.
(b) Change the subject of the formula to H in $V=d^{2} \sqrt{H}$
8. The volume of a square based pyramid, of base side e and height h, as shown, is given by the formula $V=\frac{1}{3} e^{2} h$.

The base length is doubled and the height is halved.
What happens to the volume of the cone?

9. A health survey is carried out between a group of 200 males and 200 females. The number of smokers of different ages is recorded. The tables below show the results.

Females	
Age	No. of smokers
14	6
15	10
16	19
17	17
18	14
19	4

Males	
Age	No. of smokers
14	5
15	8
16	11
17	20
18	26
19	11

(a) Construct separate cumulative frequency tables for both females and males.
(b) On the same set of axes draw a cumulative frequency diagram for both groups.
(c) Use the cumulative frequency diagram to compare smoking between the groups of males and females.
10. A toy for toddlers is designed in such a way that it never falls over.

The base is a hemisphere and the top is a cone, with some added decorative enhancements as shown in the diagram.

To prevent the toy from falling it must have the base completely filled and 24% of the upper body filled with sand.

Calculate the amount of sand needed, if the radius of the hemisphere is 8 cm and the height of the cone is 12 cm .
Give your answer correct to 3 significant figures.

Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$

11. KENNOLAUT, the dog food specialists, have recommended that dogs should drink at least three times the volume of food they consume.
To promote this the company have designed a new feeding dish with two sections, as shown in the diagrams below.

side and above view

top view

The larger section is for water and the smaller section is for food.
The dish is cylindrical in shape with a radius of 15 cm .
The dividing strip is 26 cm long.
If filled to capacity will the dish satisfy the company's recommendation?
12. A company sells boxed chocolates in two different sizes.

The boxes are mathematically similar truncated cones, as shown in the diagram below.

The cost of the chocolates should be in direct proportion to their weight.
The chocolates in the larger box have been weighed and are priced at $£ 5 \cdot 45$.
The company is considering pricing the smaller box at $£ 2 \cdot 25$.
Is this a fair price?
Your answer must be accompanied with appropriate working.

End of Question Paper

	Give 1 mark for each -	
	- 1 using $d=\frac{C}{\pi}$ - 2 calculating radius - 3 answer in standard form	- $1 d=\frac{4.01 \times 10^{4}}{\pi}=12764.23$ - $2 r=\frac{12764.23}{2}=6382.11$ - 3 answer
2.	ans: $\mathbf{£ 9 3 6 8 9}$ - 1 - knowing 2.5% knowing 3 - - calculating canswer	$\begin{array}{ll}\text { - } & 1 \\ \text { - } & 1.025 \times £ 87000 \\ \text { - } & 3 \\ 1.025 \times \text { previous answer } \\ 1.025 \times \text { previous answer }\end{array}$
3.	ans: $\mathbf{0 . 6}$ and $-\mathbf{2 . 6}$ - 1 - identifying a, b, c - 3 - substituting correctly into formula calculating one value calculating second value	- $1 \quad a=2, b=4, c=-3$ - $2 x=\frac{-4 \pm \sqrt{4^{2}-4 \times 2 \times-3}}{4}$ - $3 x=0.6$ - $4 x=-2.6$
4.		- $1 \frac{250}{360}=\frac{25}{36}$ - $2 A=\pi \times 20^{2}$ - 3 Sect $=\frac{25}{36} \times A=872.66$ - $4 \quad 40^{2}-872.66=727.34$ - $5 \frac{727.34}{1600} \times 100 \%$
	- 1 rearranging to find $\cos x=$ - 2 identifying quadrants - 3 calculations	- $1 \quad \cos x=-\frac{3}{5}$ - $2 \quad 2^{\text {nd }} 180-$ ans, $3^{\text {rd }} 180+$ ans - 3 answer

	Give 1 mark for each -	Illustration(s) for awarding each mark
6.	ans: $\mathbf{1 9 . 2 ~ m}$ $\mathbf{5} \mathbf{~ R E}$ - 1 - attempting to calculate side AC or AB - 3 calculating AC or AB using Sine Rule - 4 knowing shortest dist is at 90° to BC - 5 using SOH to calculate shortest dist calculating correctly	- $1 \quad \frac{36.1}{\sin 77}=\frac{A C}{\sin 37}=\frac{A B}{\sin 66}$ - $2 \quad \mathrm{AC}=21.1 \mathrm{~m}$ - $3 \& 4 \quad \sin 66=\frac{\text { dist }}{21.1}$ - 5 answer
7.	(a) ans: $\frac{12}{x-2 y}$ - 1 numerator - 2 denominator - 3 simplifying (b) ans: $H=\frac{v^{2}}{d^{4}} \quad \mathbf{2} \mathbf{K U}$ - 1 removing root sign by squaring - 2 dividing	- $16 x-6(x-2 y)=12 y$ - $2 y(x-2 y)$ - 3 answer - $1 \quad V^{2}=d^{4} H$ - 2 answer
8.	ans: Volume is doubled - $1 \quad$ replacing e with $2 e$, and h with $\frac{1}{2} h$ - 2 simplifying expression - 3 conclusion	- $1 \quad V=\frac{1}{3} \times(2 e)^{2} \times\left(\frac{1}{2} h\right)$ - $2 V=\frac{2}{3} e^{2} h$ - 3 answer
9.	(a) ans: $\begin{aligned} & \text { Females 6, 16, 35, 52, 66, } 70 \\ & \\ & \text { Males 5, 13, 24, 44, 70, 81 }\end{aligned}$ $2 \mathrm{KU}$ - $1 \& 2$ knowing how to construct a cumulative frequency column	- 1 Female column - 2 Male column

