Credit Mathematics - Practice Examination F

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated. Calculators may only be used in Paper 2.

MATHEMATICS Standard Grade - Credit Level

Paper I

Time allowed - 55 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may not use a calculator
4. Evaluate $(16-10 \div 2)^{2}$
5. Evaluate $4 \frac{2}{3}-2 \frac{3}{4}$ travel in 1 hour?
Give your answer in scientific notation.
6. If $f(x)=3 x-4 x^{2}$, find the value of $f(-3)$.
7. A number pattern, involving the difference between a given number and its cube, is shown below:

$$
\begin{aligned}
1^{3}-1 & =1 \times 2 \times 0 \\
2^{3}-2 & =2 \times 3 \times 1 \\
3^{3}-3 & =3 \times 4 \times 2
\end{aligned}
$$

(a) Write down a similar expression for $6^{3}-6$.
(b) Hence, write down an expression for $n^{3}-n$.
(c) By examining your answer to part (b), show that $10^{3}-10$ can also be expressed as

$$
10^{3}-10=\left(10^{2}+10\right) \times 9
$$

6. (a) Factorise completely $3 x^{2}-12$.
(b) Hence, simplify the fraction $\frac{3 x^{2}-12}{x^{2}+x-6}$.
7. A function $f(x)$ is defined as $f(x)=(3 x-2)(x+5)$.
(a) Remove the brackets and express $f(x)$ in standard form i.e. $a x^{2}+b x+c$.
(b) Hence, solve the quadratic equation $f(x)=20$.

The straight line in the diagram above passes through 200 and 100 on the \boldsymbol{t} and \boldsymbol{d} axes respectively.
(a) Find the equation of the line in terms of \boldsymbol{t} and \boldsymbol{d}.
(b) If the line were continued, would it pass through the point $\mathrm{P}(-320,250)$?

Give reasons for your answer.
9. A survey was carried out amongst $2004^{\text {th }}$ year pupils in order to find out which flavour of crisps they preferred.
The results of the survey are shown in the table below :

	 Vinegar	Prawn Cocktail	Cheese \& Onion	Smokey Bacon	Others	TOTAL
BOYS	25	22	30	18	15	110
GIRLS	22	28	20	12	8	90

(a) What is the probability that any pupil chosen at random prefers Cheese \& Onion?
(b) A boy is chosen at random. What is the probability that he prefers Prawn Cocktail?
(c) What is the probability that any pupil chosen at random does not prefer Salt \& Vinegar?
10. Market research was carried out amongst 60 consumers to find out what type of cereal they usually ate for breakfast. The outcome of the research is shown below.

Cereal Type Flakes Puffs Muesli Porridge Others/none
$\begin{array}{clllll}\begin{array}{c}\text { Number of } \\ \text { consumers }\end{array} & 21 & 15 & 4 & 11 & 9\end{array}$
Choose an appropriate statistical diagram and display these results.

Credit Mathematics Practice Exam F Marking Scheme - Paper 1

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: 121 $2 \mathrm{KU}$ -1 know order of calculations - 2 carry out calculations	$\begin{aligned} & \text { - } 1(16-5)^{2}=\ldots \\ & \text { - } 2121 \end{aligned}$
2.	ans: $\frac{23}{12}$ 2 KU -1 changing to improper fractions and choosing suitable denominator -2 evaluate	$\begin{aligned} & \cdot 1=\frac{14}{3}-\frac{11}{4}=\frac{56}{12}-\frac{33}{12} \\ & \cdot 2=\frac{23}{12} \text { or } 1 \frac{11}{12} \end{aligned}$
3.	ans: 1.08×10^{9} $3 \mathrm{KU}$ -1 change units -2 multiply - 3 leave in scientific notation	- 11 hour $=3600$ secs - $23 \times 10^{5} \times 3.6 \times 10^{3}$ - 31.08×10^{9}
4.	ans -45 $2 \mathrm{KU}$ - 1 interpret function notation -2 evaluate function	-1 $3 \times(-3)-4 \times(-3)^{2}$ - 2 -45
5.	(a) ans: $6 \times 7 \times 5$ 1RE -1 interpret (b) ans: $\mathbf{n}(\mathbf{n}+1)(\mathrm{n}-1)$ 2RE -1 for interpreting with n - 2 for $\mathrm{n}+1$ and $\mathrm{n}-1$ (c) ans: proof 2 RE -1 for interpreting $\mathrm{n}=10$ -2 for opening the brackets, etc See next page.	(a) $\bullet 16 \times 7 x 5$ (b) $\bullet 1 \mathrm{n}$ - $2 \mathrm{n}+1$ and $\mathrm{n}-1$ (c) $\left.\begin{array}{rl} \bullet 1 & 10^{3}-10 \end{array}=10 \times(10+1) \times(10-1), ~=\left(10^{2}+10\right) \times 9\right)$

	Give 1 mark for each -	Illustration(s) for awarding each mark
6.	(a) ans: $3(x-2)(x+2)$ -1 factorise fully (b) ans; $\frac{3(x+2)}{x+3}$ 2KU -1 factorise denominator - 2 simplify and stop.	$\text { -1 } 1=3(\mathrm{x}-2)(\mathrm{x}+2)$ -1 ($\mathrm{x}+3$)($\mathrm{x}-2)$ - 2 answer.
7.	(a) ans: $f(x)=3 x^{2}+13 x-10 \quad 2 K U$ - 1 for partial answer - 2 for fully correct answer (b) ans: $x=5 / 3$ or - 6 4 KU -1 for standard form -2 for factorising -3 for one correct answer -4 for $2^{\text {nd }}$ correct answer	- $13 x^{2} \ldots-10$ or... $+13 x$ - $23 x^{2}+13 x-10$ -1 $3 x^{2}+13 x-30=0$ - $2(3 x-5)(x+6)$ -3 $x=-6$ - $4 x=5 / 3$
8.	(a) ans: $d=-1 / 2 t+100$ -1 for starting to find m -2 for calculating m -3 for finding c -4 for equation with d and t (b) ans: No - point does not satisfy 2 RE equation -1 for substituting co-ordinates -2 for consistent conclusion	-1 $\mathrm{m}=(100-0) /(0-200)$ -2 \ldots. $=-1 / 2$ or equiv. -3 $\mathrm{c}=100$ -4 $d=-1 / 2 t+100$ -1 ? $250=-1 / 2 x(-320)+100$ -2 $250 \neq 160+100$, so point not on line.
9.	(a) ans: 50/200 (=1/4) - 1 for choosing the 2 correct numbers (b) ans: 22/110 (= 1/5) -1 for knowing to select from boys - 2 for completing answer (c) ans: 153/200 or equiv. $2 \mathbf{K U}$ - 1 for correct number not prefering S/V - 2 for completing answer	(a) •1 50/200 (b) $\bullet 110$ as denominator - 222 as numerator (c) •1 153 as denominator -2 200 as numerator
10.	Barchart, Histogram or Pie-chart 4 RE	Take account of e.g. proper scales, correct height of bars, proper spacing etc

Total : KU 27 RE 11

Credit Mathematics - Practice Examination F

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated. Calculators may be used in this paper.

MATHEMATICS Standard Grade - Credit Level

Paper II

Time allowed - 80 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

Standard Deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$

1. Solve the equation $5(1-3 x)=x-43$.
2.

The logo of Cheeses-R-Us, a cheese superstore, is shown across. The logo is a sector of a circle of radius of 86 cm . The larger angle at the centre is 250°.

The manager decides to improve the sign by applying gold tape around the full perimeter of the logo.

What length of tape will be required?
3. During the French Revolution, Jacques LeMon and Co. made guillotines with which to cut off the heads of the aristocracy. His apprentice, Pierre Le Punk, brought Jacques a guilldtine plade with dimensions as shown in the figure below.

To ensure a quick and relatively clean decapitation, Jacques always made sure that the obtuse angle of the blade was more than 110°.
Does Pierre's guillotine fulfil this condition?
Your answer must include appropriate working.
4. Carbon dioxide is the gas put into "fizzy" drinks to give the drink its"fizz". The makers of Steel-Bru, a soft drink, estimate that, by the end of a week, a bottle of their drink will have lost 2% of whatever volume of carbon dioxide that the bottle had contained at the beginning of that week.

If the bottle loses more than $\mathbf{1 5 \%}$ of its carbon dioxide, the contents have to be "re-carbonated" i.e. more carbon dioxide must be put into the drink.

If $250 \mathrm{~cm}^{3}$ of carbon dioxide is put into a bottle at the beginning of a week, how many weeks can the bottle lie unused without needing to be re-carbonated?
(show your working)
5.

Figure 2

A woman is having a shower but the sprinkler is a bit too close to her head. To give herself more headroom, she would like to increase the vertical height of the sprinkler by 9 cm . This can be achieved by rotating the shower attachment AB by x° in an anti-clockwise direction so that B is now at position C .

If the shower attachment is 22 cm long and is, at present, at an angle of 30° to the horizontal, as shown in Figure 2 above, find the angle x° required to produce this 9 cm increase in height.
6. (a) Express $\frac{3}{x}-\frac{3}{x+1}$ as a single fraction in its simplest form $(x \neq 0, x \neq-1)$.
(b) Change the subject of the formula to v in $b=\frac{v-u}{c}$
7. A girl is using headless matches to construct hexagonal patterns, as shown in the three diagrams below.

(a) How many matches will be needed for $\mathbf{P}=\mathbf{4}$, i.e. Pattern 4 ?
(b) The number of matches, \mathbf{m}, required to construct Pattern \mathbf{P} is given by the formula

$$
\mathbf{m}=a \mathbf{P}^{2}+b \mathbf{P}
$$

Find algebraically the values of a and b.
8. After finishing a glass of lemonade, the drinker discovers that the circular area of the base of his glass is half of the area of the circular beer-mat on which the glass is resting.

If the diameter of the base of the glass is 6 cm , what is d, the diameter of the beer-mat? (Give answer in centimetres, to 1 decimal place.)
9. Solve the equation $5 x^{2}-2 x-9=0$.

Give your answers correct to 2 significant figures.
10. "HAPPY-COLA" have decided to issue a "limited edition" cone-shaped can to celebrate their $50^{\text {th }}$ anniversary.
Their normal can is a cylinder whose height is 11.5 cm and whose
diameter is 6.5 cm .

If the height of the cone is to be the same as the height of the cylinder, i.e. 11.5 cm , and the volume of the cone is to be the same as the volume of the cylinder, calculate the diameter of the cone?
[Volume of a cone : $V=\frac{1}{3} \pi r^{2} h$]
(Answer in centimetres giving your answer correct to 1 decimal place)
11. The time, T minutes, taken to mow a square lawn varies directly as the square of its length s metres and inversely as the breadth $b \mathrm{~cm}$ of the blade in the lawnmower. A lawnmower whose blade is 30 cm in breadth takes 18 minutes to mow a square of length 6 metres.
(a) Find a formula connecting T, s and b.
(b) The gardener has just mowed a square lawn in 20 minutes. Another lawn has a side which is twice as long and the gardener wants to mow this lawn in the same time. By what number would the blade's length in the lawnmower have to be multiplied in order to achieve this?
12. The heights, in centimetres, of 30 pupils at the end of their 3rd year at secondary school were measured and the following data was obtained:

$$
\sum x=4545 \text { and } \sum x^{2}=698450
$$

(a) Calculate the mean and standard deviation.
(b) The previous year, a similar survey had been done. The mean had been 152 cm and the standard deviation had been 13.5 cm . How do these figures compare with the present figures?

13. In a bearing diagram, the bearings of a ship from 2 different ports are often given. To make other useful calculations, it is often necessary to find the angle between the lines of these 2 bearings. In the diagram below, a ship A lies on a bearing of 102° from a port P and on a bearing of 235° from port Q .

(a) In the diagram above, show that angle $\mathrm{PAQ}=133^{\circ}$

(b) Show that, when A has a bearing of \mathbf{a}° from P and \mathbf{b}° from Q , as in the diagram above, then the angle between the bearings, angle PAQ, is always equal to $\mathbf{b}^{\circ}-\mathbf{a}^{\circ}$.

Credit Mathematics Practice Exam F
Marking Scheme - Paper 2

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: $x=3$ $3 \mathrm{KU}$ -1 for opening brackets $\bullet 2$ for gathering terms -3 for solution	-1 5-15x -2 $48=16 x$ - 3 3 $3=x$
2.	ans: $\mathbf{5 4 7 . 1} \mathbf{c m}$ -1 for ratio $\bullet 2$ for $\mathrm{C}=\pi \times 172$ -3 for calculation -4 for adding 2 x and completing calculation	- $1250 / 360 \mathrm{x} .$. -2 $172 \times \pi$ - 3 ... $=375.1$ -4 547.1 cm
3.	$\begin{aligned} & \text { ans: No, angle }=\mathbf{1 0 5 . 2}^{\circ}<\mathbf{1 1 0} \quad \mathbf{5} \mathbf{~ R E} \\ & \text {-1 creating a R.A.T, sides }=13 \text { and } 48 \mathrm{~cm} \\ & \text {-2 for tanx } \\ & \text {-3 for calculating } x^{\circ} \\ & \text {-4 for adding to } 90^{\circ} \\ & \text {-5 for clear conclusion } \end{aligned}$	-1 e.g. diagram - $2 \tan x^{\circ}=13 / 48$ -3 $x^{\circ}=15.1^{\circ}$ -4 angle $=105.2^{\circ}$ -5 not big enough
4.	ans: $\mathbf{8}$ weeks e.g. $\mathbf{4 ~ K U}$ -1 for 2% lost $=0.98$ $\bullet 2$ for $250 \times(0.98)^{8}$, stated or implied. -3 for minimum volume -4 $250 \times(0.98)^{9}<212.5$ and conclusion	N.B. Pupils may simply -1 use successive calculations - $2.98 \mathrm{x} \ldots$ $212.69 \ldots$ cubic cm may solve $\ldots . .$. $0 \cdot 98^{n}<0.85$ $\|$-3 212.5 cubic cm -4 $208.4<212.5$, so 8 weeks max.
5.	$\text { ans: } 35.4^{\circ}$ -1 for knowing horizontal dist. from A to B -2 for calculation -3 for finding horizontal dist. from A to C -4 for calculation -5 for subtraction to give answer	-1 $\sin 30^{\circ}=\mathrm{d} / 22$ - $2 \mathrm{~d}=11 \mathrm{~cm}$ -3 $11+9=20 \mathrm{~cm}, \sin (x+30)^{\circ}=20 / 22$ -4 full amgle $=65.4$ -5 required angle $=35.4^{\circ}$
6.	(a) ans: $\frac{3}{x(x+1)}$ 3 KU $\bullet 1$ for numerator -2 for denominator -3 for simplifying numerator	-1 $3(x+1)-3 x$ - $2 \mathrm{x}(\mathrm{x}+1)$ - $3=3$

	Give 1 mark for each -	Illustration(s) for awarding each mark
6.	(b) ans : v=u+bc $\quad 2 \mathrm{KU}$ -1 for removing fractions - 2 for transferring \mathbf{u}	- $1 \mathrm{bc}=\mathrm{v}-\mathrm{u}$ -2 $\mathrm{bc}+\mathrm{u}=\mathrm{v}$
7.	(a) ans: $\mathbf{4 8}$ matches - 1 for correct answer, give $2 / 2$ but... -2 for e.g.a sketch leading to wrong answer (b) ans: $a=2, b=4$. 4 RE -1 for knowing to use sim.eqns. -2 for forming 2 eqns. -3 for calculating 1 letter's value -4 for calculating the other value	-1 48 matches -2 diagram - 1 see working -2 e.g. $6=a+b, 16=4 a+2 b$ -3 $\mathrm{a}=2$ -4 $\mathrm{b}=4$
8.	ans: 8.5 cm -1 for area of base and area of beermat -2 for r^{2} -3 for r -4 for diameter and rounding Ignore premature rounding	-1 glass area $=28.6$, beermat area $=56.52$ $\bullet 2 \mathrm{r}^{2}=56.52 / 3.14=18$ -3 $\mathrm{r}=4.24$ - $4 \mathrm{D}=8.48=8.5 \mathrm{~cm}$
9.	$\text { ans: } x=1.6 \text { or }-1.2$ -1 for finding a, b and c for use in formula and for correct substitution -2 for square root calculation -3 for 2 answers unrounded -4 for correctly rounded answers	-1 $\mathrm{a}=5, \mathrm{~b}=-2, \mathrm{c}=-9$ and $x=\frac{2+\sqrt{4-4 \times 5 \times-9}}{10}$ -2 $184=4-4 \times 5 \mathrm{x}(-9)$ - $3 x=1.56$.. or $-1.16 \ldots$ -4 $x=1.6$ or -1.2
10.	ans: Diameter $\approx 11.2 \mathrm{~cm} \quad 4 \mathrm{RE}$ -1 for volume of cylinder -2 for vol. of cyl. =vol. of cone (strategy) -3 for calculating r^{2} -4 for final answer	- 1 volume of cyl. $=381.4 \mathrm{~cm}^{3}$ - $2381.4=1 / 3 \pi r^{2} h$ $\bullet 3 \mathrm{r}^{2}=31.7 \mathrm{~cm}$ -4 $\mathrm{D}=11.2 \mathrm{~cm}$ NB Ignore rounding, information to 1 d.p. is only given as a guide to help the pupil through the calculation.

	Give 1 mark for each -	Illustration(s) for awarding each mark
11.	(a) ans: $T=15 \mathrm{~s}^{2} / \mathrm{b}$ -1 for interpreting variation statement -2 for substituting -3 for finding k, then constant of variation. No need for full equation (b) ans: Blade x 4 -1 for interpreting " ..as the square of.." -2 for answer	-1 $\mathrm{T}=\mathrm{ks}^{2} / \mathrm{b}$ - $218=\mathrm{kx}^{2} / 30$ - $3 \mathrm{k}=15$ - $1 \mathrm{sx} 2 \Rightarrow \mathrm{bx} 2^{2}$ - 2 bx 4
12.	(a) $\begin{aligned} & \text { ans: } \text { mean }=151.5 \text { and } \\ & \text { s.d. }=18.5 \mathrm{~cm} \end{aligned}$ -1 for calculating mean - 2 for correct substitution into standard form. -3 for answer (b) ans: same average (or mean) height but more spread than last year 2 RE -1 for comparing means $\bullet 2$ for interpreting s.d. as the idea of "spread"	-1 $4545 / 30=151.5 \mathrm{~cm}$ -2 s.d. $=\sqrt{\frac{698450-(4545)^{2} \div 30}{29}}$ - $3 \quad=18.5$ -1 mean or average the"same-ish" as at present. -2 last year's heights less spread out
13.	(a) ans: $\mathbf{7 8}^{\circ}+\mathbf{5 5}^{\circ}=\mathbf{1 3 3}{ }^{\circ}$ - 1 for 180° - " alternate angle " $\bullet 2$ for bearing - 180° then adding to $\bullet 1$ (b) ans; proof e.g. - 1 for angle PAN - 2 for angle NAQ -3 for adding the 2 parts above and clearly simplifying to get answer Accept - $\mathbf{a}^{\circ}+\mathbf{b}^{\circ}$	-1 $180^{\circ}-102^{\circ}=78^{\circ}$ -2 $235^{\circ}-180^{\circ}=55^{\circ}$. Then $55^{\circ}+78^{\circ}=133^{\circ}$ - 1 PAN $=180^{\circ}-\mathrm{a}^{\circ}$ -2 $\mathrm{NAQ}=\mathrm{b}^{\circ}-180^{\circ}$ - $3 \mathrm{PAQ}=\mathrm{PAN}+\mathrm{NAQ}$ $\begin{aligned} & =180^{\circ}-a^{\circ}+b^{\circ}-180^{\circ} \\ & =-a^{\circ}+b^{\circ} \text { i.e } b^{\circ}-a^{\circ} \end{aligned}$ or $\mathrm{PAN}=180-\mathrm{a}, \mathrm{NAQ}=180-(360-\mathrm{b})$, etc.
		Total : KU 24 RE 35
For PI \& PII Totals : KU 51 RE 46		

