Credit Mathematics - Practice Examination E

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated.
Calculators may only be used in Paper 2.

MATHEMATICS
 Standard Grade - Credit Level
 Paper I

Time allowed - 55 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may not use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

Standard Deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$

1. Evaluate $38 \cdot 5-24 \cdot 5 \div 7$
2. (a) Evaluate $\frac{b}{a}$ where $a=-3$ and $b=9$
(b) Evaluate $j^{2}+4 j k$ where $j=-5$ and $k=-2$
3. Evaluate $\frac{6}{7}$ of $\left(\frac{2}{3}-\frac{1}{2}\right)$

KU	RE
2	

(b) Factorise fully $15 y^{2}-3 y$
(c) Hence, or otherwise, express $\frac{15 y^{2}-3 y}{25 y^{2}-1}$ in its simplest form.
(b) Find the value of y° in terms of a° in the diagram opposite.

6. (a) Remove the brackets and simplify

$$
(t-5 v)(3 t+2 v)
$$

(b) Solve algebraically the equation

$$
3 x^{2}-13 x+4=0
$$

(c) Solve algebraically the equation

$$
\frac{m}{3}-\frac{(m-3)}{2}=1
$$

7.

The diagram shows a dog's kennel.
The dimensions of the kennel, in feet, are shown.

If its two ends are congruent trapeziums and all its other faces are rectangles, find the volume of this kennel.
8.

The diagram above shows a quadrilateral ABCO . BA and BC are tangents to the circle, centre O , and E is the point where OB meets the circle.

Find the size of angle OEA.
9. The diagram across shows the cross-section of the petrol tank of a Zephyr car.
The tank is being filled at a constant rate.
Which of the following 4 graphs, A to D , best describes how the depth of the fuel is increasing as the tank is filling
 up with petrol?

Give reasons for your answer.

10.

$\mathbf{N}=\mathbf{1}$

$\mathbf{N}=\mathbf{2}$

$\mathbf{N}=3$

Fred is making square patterns from headless matches.
\mathbf{N} stands for the number of matches along the side of each square pattern.
(a) How many matches would be required to make the pattern where $\mathbf{N}=\mathbf{4}$?
(b) The formula for \mathbf{M}, the number of matches needed to make a square of side \mathbf{N} matches, is given by

$$
\mathbf{M}=a \mathbf{N}^{2}+b \mathbf{N}
$$

Find the values of a and b.

Credit Mathematics Practice Exam E Marking Scheme - Paper 1

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: 35 $2 \mathrm{KU}$ -1 know order of calculations - 2 carry out calculations	$\begin{array}{ll} \bullet & 24.5 / 7=\ldots \\ \bullet & 25 \end{array}$
2.	(a) ans: -3 - 1 substitute into expression - 2 evaluate (b) ans: 65 - 1 substitute into expression - 2 multiply out	(a) $\bullet 1 \quad 9 \div(-3)$ -2 - 3 $\begin{array}{lll}\text { (b) } & \bullet(-5)^{2}+[4 \times(-5) \times(-2)] \\ & \bullet & 65\end{array}$
3.	ans: $\frac{1}{7}$ - 1 add fractions - 2 multiply fractions	-1 1/6 - 2 1/7 or equivalent
4.	(a) ans - 18 -1 interpret function notation - 2 evaluate function (b) ans $3 y(5 y-1)$ $\mathbf{1 K U}$ (c) ans $\frac{3 y}{5 y+1}$ 2KU -1 factorise denominator - 2 simplify	(a) $\quad 1 \quad 5 \times(-2)-[2 \times(-2) \times(-2)]$ - $2-18$ (b) $\bullet 13 y(5 y-1)$ (c) •1 $(5 y-1)(5 y+1)$ - $23 \mathrm{y} /(5 \mathrm{y}+1)$
5.	(a) ans: 44° -1 finding the 2 equal triangle angles - 2 for calculating the $3^{\text {rd }}$ angle (b) ans: $2 a-180^{\circ}$ 3RE - 1 for supplementary angle -2 for $\mathrm{y}=180^{\circ}-2 \mathrm{x}$ (supp. angle) - 3 for answer	(a) $\cdot 1 \quad 180^{\circ}-112^{\circ}=68^{\circ}$ - $2180^{\circ}-2 \times 68^{\circ}=44^{\circ}$ (b) $\bullet 1$ for $(180-\mathrm{a})^{\circ}$ - 2 for $\mathrm{y}=180^{\circ}-2(180-\mathrm{a})^{\circ}$ - 3 for $2 \mathrm{a}-180$

Credit Mathematics - Practice Examination E

Please note ... the format of this practice examination is the same as the current format. The paper timings are the same, as are the marks allocated. Calculators may be used in this paper.

MATHEMATICS
 Standard Grade - Credit Level
 Paper II

Time allowed - 80 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

Standard Deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$
1.

Wallace the Bruce, the famous Scottish hero, went into battle with a pyke which was $2 \cdot 5$ metres in length.

Its steel blade was in the shape of a sector of a circle whose edges met at an angle of 135°, as shown in the diagram below

If the edges of the blade were 38 cm in length, what was the area of 1 side of the steel blade? (Answer to the nearest cm^{2})

2. At any given temperature, the time, T minutes, taken to cook a steak varies directly with the weight, $W \mathrm{~kg}$, of the steak and also directly with the square of the distance, $D \mathrm{~cm}$, between the grill and the steak.
(a) Write down a formula which connects T with W and D.
(b) When the distance D is 2.5 cm , it takes 7 minutes to cook a steak.

How long would it have taken to cook the same steak, at the same temperature, if the distance had been 5 cm ?

$$
5 t-8 \geq 4-(5 t-8)
$$

4. Solve algebraically the following inequality
5.

(i) Take any 3 consecutive numbers - e.g. 3, 4, 5 .
(ii) Square the middle one - e.g. $\mathbf{4}^{2}=\mathbf{1 6}$
(iii) Multiply the 2 remaining "outside" numbers e.g. $\mathbf{3} \times \mathbf{5}=\mathbf{1 5}$

Note that the difference between (ii) and (iii), (i.e. 16-15), is 1 .
(a) Use the same routine as above with 7, 8, 9 and show clearly again that the difference between (ii) and (iii) is 1 .
(b) Let the first (i.e. smallest) number be \boldsymbol{n}. Write down the next 2 numbers in terms of \boldsymbol{n}.
(c) Hence, or otherwise, show that the square of the middle number of 3 consecutive numbers will always be $\mathbf{1}$ more than the product of the other 2 numbers.
6. A toll barrier has been placed across a river to control the flow of shipping.

Unfortunately, a dead tree has drifted downstream and lodged itself on the river-bed at a position 28 metres directly up-river from the fulcrum, \mathbf{F}, of the barrier and at an angle of 36° to the river-bank, as shown in the diagram above. The diagram is not to scale.

The lock-keeper in charge reckons that, if the barrier were to turn clockwise from \mathbf{F}, then it would not strike the dead tree (so the tree presents no immediate danger to the barrier).
Is he correct? (Show calculations to justify your answer.)
7. Solve the following trigonometric equation:

$$
3 \sin x^{\circ}+2=1, \quad 0 \leq x \leq 360
$$

8. A charter aeroplane, when full, can carry 96 passengers. Some of these passengers will be travelling $1^{\text {st }}$ class while others will be travelling $2^{\text {nd }}$ class.

Let F be the number of $1^{\text {st }}$ class passengers and S be the number of $2^{\text {nd }}$ class passengers.
(a) Given that the plane is full, use the information above to write down a simple equation involving F and S.

Each $1^{\text {st }}$ class passenger is allowed to have 65 kg of luggage but a $2^{\text {nd }}$ class passenger is allowed only 35 kg . The total weight of luggage allowed on board is 4140 kg
(b) Assuming that each passenger has taken their maximum amount of luggage, write down another equation involving F and S.
(c) Find the number of $1^{\text {st }}$ and the number of $2^{\text {nd }}$ class passengers.
9.

In the diagram $A B$ is parallel to $D C$.
If $\mathrm{AT}=120 \mathrm{~cm}, \mathrm{DT}=143 \mathrm{~cm}$ and $\mathrm{CT}=156 \mathrm{~cm}$, calculate the length of DB.
10. A coal mine has 2 main entrances to W , its underground workings.

The entrance at O is used for the extracted ore and as the miners entrance.
The other at S is used for supplies and machinery.

The entrances O and S are at the same horizontal level.

The distance, OS, between the two entrances is 62 m .
The angle of depression of W from O is 28° and the angle of depression of W from S is 57°.
The mine owner wants to build a vertical shaft down to the workings from a point V , which is somewhere along the line OS.

Calculate the length of this vertical shaft, giving your answer to the nearest whole number of metres.
11. The national soft drink of Spain is called " Elaborado del Hierro" and it is sold in two main bottle sizes.

The smaller bottle has a base diameter of 5 cm and holds 400 ml .
The larger bottle has a base diameter of 7.5 cm and it holds 1350 ml .
The bottles look alike but could they actually be mathematically similar?
(Show calculations to justify your answer.)
12. The blood pressure of 9 young women was measured in mm .

The data gave the following summary totals:

$$
\sum x=1156 \text { and } \sum x^{2}=148980
$$

(a) Calculate the sample mean and the standard deviation, giving your answer to 1 decimal place.
(b) A group of older women had a mean blood pressure of $158 \cdot 0 \mathrm{~mm}$ and a standard deviation of 8.6 mm . How does the blood pressure of these older women compare with that of the younger women?

At present, the angle of elevation of the beam is 20° and the beam originates from a point 0.5 metres above the ground.
A security guard thinks that doubling the angle of elevation of the beam would exactly double the height that the beam presently reaches up the building.

Show that the guard is in fact wrong. (No marks for a scale diagram)

Credit Mathematics Practice Exam E Marking Scheme - Paper 2

	Give 1 mark for each -	Illustration(s) for awarding each mark
1.	ans: $\mathbf{1 7 0 0} \mathbf{s q ~ c m}$. $\mathbf{3 ~ K U}$ \bullet \bullet for ratio $\bullet 2$ for formula $\bullet 3$ for answer	-1 135/360 - 23.14×38^{2} - 3 1700sq cm - do not penalise lack or errors in rounding
2.	(a) ans: $\mathrm{T}=\mathrm{kWD}{ }^{2}$ 1 KU - 1 for formula (b) ans: 28 mins 2 RE -1 for idea that doubling D will square T -2 for answer	(a) $\bullet 1 \quad \mathrm{~T}=\mathrm{kWD}^{2}$ or equiv. (b) $\quad 1$ e.g. $(5 / 2.5)^{2}$ -2 28 mins
3.	ans: see candidates work 4 RE -1 proper labels $\bullet 2$ - $\bullet 4$ properly completed diagram.	$\bullet 1$ - 2-•4 e.g. correct rectangles on barchart
4.	ans : $\mathbf{t} \geq \mathbf{2}$ $\mathbf{3 ~ K U}$ -1 for terms collected -2 - 3 for numbers collected 	-1 10t or -10 t -2 20 or -20 - $3 \mathrm{t} \geq 2$
5.	(a) ans: difference is 1 -1 for clear use of the algorithm (b) ans: $\mathrm{n}+1$ and $\mathrm{n}+2 \quad 2$ RE -1 for $1^{\text {st }}$ term - 2 for $2^{\text {nd }}$ term (c) ans: proof -1 for applying $1^{\text {st }}$ part of algorithm. -2 for applying $2^{\text {nd }}$ part. -3 for final proof	(a) $\bullet 18 \times 8=64,9 \times 7=63$ and $64-63=1$ (b) $\bullet 1 \mathrm{n}+1$ - $2 \mathrm{n}+2($ or $\mathrm{n}+1+1)$ (c) - $1(\mathrm{n}+1)^{2}=\mathrm{n}^{2}+2 \mathrm{n}+1$ -2 $n(n+2)=n^{2}+2 n$ -3 difference is 1 clearly shown.
6.	ans: lock-keeper correct since $34.6>31$ 4 RE -1 for use of trigonometry -2 for use of trigonometry where x is the distance from dead tree to F . - 3 for $\mathrm{x}=34.6$ or 35 -4 for correct conclusion.	- $1 \cos 36^{\circ}=\ldots$ - 2 ... $=28 / \mathrm{x}$ - $3 \mathrm{x}=34.6$ or 35 -4 lock-keeper is correct ($34.6>31$, so barrier will miss the tree.)

	Give 1 mark for each •	Illustration(s) for awarding each mark
7.	ans: $199.5^{\circ}, 340.5^{\circ} \quad 3 \mathrm{KU}$ - 1 for manipulation to $\sin x=\ldots$ - 2 for calculation - 3 for $2^{\text {nd }}$ answer	-1 $\quad \sin x=-1 / 3$ -2 $\mathrm{x}=\left(-19.5^{\circ}=\right) 340.5^{\circ}$ -3 $x=199.5^{\circ}$ N.B. $x=-19.5^{\circ}$ is not acceptable for $\bullet 2$
8.	(a) ans: $\mathrm{F}+\mathrm{S}=96$ -1 for equation (b) ans: $65 \mathrm{~F}+\mathbf{3 5 S}=4140 \quad 2 \mathrm{RE}$ - 1 for part of equation - 2 for part of equation (c) ans: $F=26, S=70$ - 1 for setting up the sim. equations - 2 for calculating 1 variable - 3 for calculating the other variable	(a) $\bullet \mathrm{F}+\mathrm{S}=96$ (b) •1 e.g. $65 \mathrm{~F}+35 \mathrm{~S} \ldots$ -2 $65 \mathrm{~F}+35=4140$ (c) $\bullet 1 \quad 65 \mathrm{~F}+35=4140, \mathrm{~F}+\mathrm{S}=96$ - $2 \mathrm{~F}=26$ - $3 \mathrm{~S}=70$
9.	ans: $\quad \mathrm{DB}=253 \mathrm{~cm} \quad 3 \mathrm{KU}$ $\bullet 1$ and $\bullet 2$ for scale factor or fractions - 3 for final answer.	\bullet 1-•2 S.F. $=120 / 156$ or equiv. or $B T / 143=120 / 156$ - $3 \quad \mathrm{BT}=110 \mathrm{~cm}$ and $\mathrm{DB}=253 \mathrm{~cm}$.
10.	ans: $\quad \mathrm{VW}=25 \mathrm{~m} \quad 5 \mathrm{RE}$ - 1 for attempting to find OW or WS using the sine rule - 2 for $\mathrm{OW}=\ldots$ - 3 for finding OW. -4 for using trig. to find VW. -5 for finding VW.	```-1 e.g. \(\mathrm{OW} / \sin 57^{\circ}=62 / \sin 95^{\circ}\) -2 \(\mathrm{OW}=\sin 57^{\circ} \times 62 / \sin 95^{\circ}\) - \(3 \quad \mathrm{OW}=52.2\) \(\bullet 4\) e.g. \(\sin 28^{\circ}=\mathrm{VW} / 52\) -5 \(\quad \mathrm{VW}=25 \mathrm{~m}\).``` N.B. Ignore premature rounding - this will usually lead to a rounded answer of $\mathbf{2 4 m}$. Also, do not penalise unrounded answers. Note: There are other ways to this solution, mark at your own discretion.

	Give 1 mark for each -	Illustration(s) for awarding each mark
11.	ans : Yes, bottles could be similar 4 KU -1 calculating the linear scale factor - 2 knowing to cube the S.F. - 3 for calculating the new volume - 4 for consistent conclusion	- $17.5 / 5=$ S.F. - $21.5^{3}=3.375 \mathrm{~s} / \mathrm{i}$ - $3 \mathrm{~V}=400 \times 3.375=1350$ -4 bottles could be similar since volumes are consistent with similar shape
12.		(a) $\bullet 128.4$ -2 $\sqrt{\frac{148980-\frac{1156^{2}}{9}}{9-1}}$ -3 $\quad 7.9$ (b) $\bullet 1$ e.g. these women have higher blood pressure - 2 e.g. the standard deviation is "higher" for these older women(accept "about the same as ")
13.	ans: - $\mathbf{2 . 6}$ or $\mathbf{2 . 1}$ 4 KU -1 identify constants - 2 substitute constants into quadratic formula - 3 calculation of 1 value - 4 calculation of the other value	- $1 \quad \mathrm{a}=2, \mathrm{~b}=-1, \mathrm{c}=-7$ -2 $x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 2 x(-7)}}{4}$ -3 $x=-1.6$ - $4 x=2.1$
14.	ans: proof $(4.87 \times 2 \neq 10.57) \quad 4$ RE -1 use correct trig. function to calculate height - 2 calculation, adding the 0.5 m - 3 knowing to double the angle and to re-calculate the "new"height - 4 compare the 2 heights and clearly show that 1 is not exactly the double of the other.	- $1 \tan 20=x / 12$ - $2 \mathrm{x}_{1}=4.37+0.5=4.87 \mathrm{~m}$ - $3 \quad \mathrm{x}_{2}=10.07+0.5=10.57$ - $4 \quad 4.87 \times 2 \neq 10.57$

