Credit Mathematics - Practice Examination D

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - $\mathbf{2}$ hours 15 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

1. Solve algebraically the following equation

$$
5 x-11=4(2 x+1)
$$

2. A function is defined as $f(x)=2 x^{2}-1$.
(a) Find
i) $f(2)$
ii) $f(\sqrt{ } 2)$
(b) If $f(t)=17$, find the value(s) of t.
3. Circular tops for cans are often "stamped out" from a square of aluminium.

The circular top for the can across is "stamped out" of a square of side 6 cm .

(a) Calculate the area of aluminium discarded for each top (i.e. find the shaded area).
(b) Express this discarded area as a percentage of the area of the original square.
(c) Show that, in general, for a circle stamped out of a square of side $2 r$, the shaded area, A, is given by

$$
A=r^{2}(4-\pi)
$$

(d) Hence, show that the percentage, P, of the original area of the square which will be discarded is given by

$$
P=25(4-\pi)
$$

4. The value of an antique grandfather clock is expected to increase each year by 4% of the value it had at the beginning of the previous year.

If it was valued at $£ 560$ at the beginning of 1999 , what will its expected value be at the end of the year 2001, to the nearest $£$?
5.

A microwave oven has a 52 cm door which is designed in such a way that the door will swing, at most, 48 cm from the oven, as shown in the diagram below. (viewed from above)

(a) Show that the maximum angle the door can swing through is 67°
(given to the nearest whole number of degrees)
(b) What area will be swept out when the door swings through this angle?
6. Solve algebraically the equation $3 p^{2}+2 p-4=0$, giving your answers correct to 1 decimal place.

A farmer wishes to test the effect of a new fertilizer on his crops. To compare yields, he splits a triangular piece of land into two equal areas by constructing a fence along BT. Each of the two smaller triangles is now "half" the area of the original triangle.

Given that $\mathrm{AB}=50$ metres, $\mathrm{AC}=90$ metres and that the angle $\mathrm{BAC}=60^{\circ}$, calculate the length of AT.
8. An accurate formula for changing degrees Centigrade (C) to degrees Fahrenheit (F) is given as

$$
F=1 \cdot 8 C+32
$$

(a) A "rough" method of changing ${ }^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$ is to "double C and then add 30 ". Write down this "rough" method as a formula.
(b) There is only one temperature, in ${ }^{\circ} \mathrm{C}$, where the "rough" formula gives exactly the same answer as the accurate formula.
Find this temperature algebraically.
9.

2.5 cm

$2 \cdot 0 \mathrm{~cm}$
"Les Egouts de Paris" is a perfume which is sold in two sizes, as shown opposite.

The bottles are mathematically similar in shape.
(a) The volume of the larger bottle, which has a base diameter of 2.5 cm , is 100 ml . Calculate the volume of the smaller bottle which has a base diameter of 2.0 cm . Give your answer correct to the nearest millilitre (ml).
(b) The manufacturers wish to make a 20 ml sampler bottle.

If it is to be similar to the other two bottles, find its base diameter to the nearest millimetre.
10. Establish the equation of the line opposite in terms of d and t.

11. Solve the following equation for x, where $0 \leq x \leq 360^{\circ}$.

$$
6+4 \tan x^{\circ}=9
$$

12. A cargo ship sets out from its home port P with a load of machinery, bound for port H , as shown in the diagram.

Because of bad weather, the ship sails due north from P until it reaches point T, a distance of 90 km , and then it travels on a bearing of 078° to its destination port H .

If the bearing of P from H is 222°, calculate the distance from P to H , giving your answer correct to the nearest kilometre.
13. W/ESIERN GAS charge their customers for the amount of gas that they use every quarter of a year as follows :
(i) $1.6 p$ per unit for the first 600 units used;
(ii) $1.1 p$ per unit for any further units used;
(iii) a service charge of $£ 8.50$ is then added, no matter how many units are used.
(a) John uses 2800 units of gas in one quarter. Calculate his bill for this usage.
(b) Find a formula for \boldsymbol{C}, the cost in pounds, of using \boldsymbol{u} units of gas, where $\boldsymbol{u}>600$. Write the formula in its simplest form.
14. (a) Factorise $2 x^{2}-9 x+10$
(b) Hence simplify $\quad \frac{2 x^{2}-9 x+10}{x^{2}-4}$
15. The value of $\frac{1}{2} \pi$, where $\pi=3 \cdot 1415 \ldots .$. , can be shown to have an approximate value which is given by evaluating a series of fractions, as shown in the examples below :
i) $\frac{1}{2} \pi[4]=\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5}=1 \cdot 422 \ldots$.
ii) $\quad \frac{1}{2} \pi[5]=\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5}=1 \cdot 706 \ldots$.
iii) $\frac{1}{2} \pi[6]=\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7}=1 \cdot 462 \ldots$.
(a) Write down and evaluate the series of fractions for $\frac{1}{2} \pi[8]$.
(b) Let n be any even number. Write down the last two fractions of the series $\frac{1}{2} \pi[n]$, in terms of n.
(c) This time let n be any odd number. Again, write down the last two fractions
of the series $\frac{1}{2} \pi[n]$, in terms of n.
series $\frac{1}{2} \pi[n]$, in terms of n.
16.

A lady's hair colourant comes in a package which is a square-based pyramid made of cardboard.

Its net is shown above.
The package has a square base of side 5 cm and each of the four isosceles triangles has a sloping edge of length 6.5 cm .

Find the volume of this pyramid, to the nearest cubic centimetre.
[Volume of a pyramid is given as $V=\frac{1}{3} A h$, where \boldsymbol{A} is the base area and h is the vertical height]
17.

1 LAYER

2 LAYERS

3 LAYERS

Clare is using headless matchsticks to make simple triangular patterns, as shown above.
(a) How many matches will she need to construct a similar pattern which has 4 LAYERS?
(b) The number of matches, M, required to complete a pattern which has L layers is given by the equation

$$
M=a L^{2}+b L
$$

Find algebraically the values of a and b.

Credit Mathematics - Practice Exam D

1. For $\ldots=8 x+4$

For $-15=3 x$ or $15=-3 x$
For $-5=x$
a) (i) For $f(2)=7$
(ii) For $f(\sqrt{2})=3$
b) For $2 t^{2}-1=17$

For $\quad t^{2}=9$
For two answers $t=-3$ or $t=3$
a) For radius $=3 \mathrm{~cm}$ stated $/ \mathrm{implied}$

For area of circle $=28.24$
For area of square $=36$ and shaded area $=7.74 \mathrm{sq} . \mathrm{cm}$.
[KU 3]
b) For $7.74 / 36 \times 100$

For $\% \mathrm{ge}=21.5$
[KU 2]
c) \quad For area of square $=4 r^{2}$

For area of circle $=\pi r^{2}$
For $A=4 r^{2}-\pi r^{2}=r^{2}(4-\pi)$
$\left[\begin{array}{ll}R A & 3\end{array}\right]$
d) For $P=r^{2}(4-\pi) / 4 r^{2} \times 100$

For canceling down to $P=25(4-\pi)$
[RA 3]
4. For 1.04 stated / implied

For 1.04^{3} stated / implied
For $£ 630$ (or the unrounded $£ 629.92$)
[KU 3]
5. a) For hypotenuse $=52 \mathrm{~cm}$, stated $/$ implied

For $\sin x=48 / 52$
For $x=67^{\circ}$
[KU 3]
b) For $\mathrm{A}=67 / 360 \times \ldots$.

For 3.14×52^{2}
For Area $=1581 \mathrm{~cm}^{2}$ (accept correct, unrounded answers)
[KU 3]
$6 \quad$ For $\quad a=3, b=2, c=-4$, stated $/$ implied
For correct substitution of above into quadratic formula (s / i)
For $\quad(-2 \pm \sqrt{52}) / 6$
For $\quad x=0.9$ and -1.5
[KU 4]
7. For e.g. Area of $\Delta \mathrm{ABC}=1 / 2 \times 50 \times 90 \times \sin 60^{\circ}=1948.6 \mathrm{~m}^{2}$ (or 1949) (1)

For $\quad 1 / 2$ of above area $=974.3 \mathrm{~m}^{2}$ (or $974.50 \quad \ldots$. (1)
For re- using area formula i.e. $974.3=1 / 2 \times 50 \times$ AT $\times \sin 60^{\circ} \quad \ldots$. (1)
For $\quad \mathrm{AT}=45 \mathrm{~m}$
.... (1) [RA 4]
8. a) For $F=2 C+30$ or equivalent
.... (1) [KU 1]
b) For $2 C+30=1.8 C+32$

For $\quad 0.2 C=2$
For $\quad C=10 \quad \ldots$. (1)
[RA 3]
" $C=10$ " unsupported by equation work...0/3 ; $C=10$ " checked in/ into both equations.. $1 / 3$
9.
a) For scale factor $=2.0 / 2.5=0.8$, stated or implied

For $V=0.8^{3} \ldots$
For $V=0.8^{3} \times 100=51 \mathrm{ml}$ (Accept 51.2 ml)
[KU 3]
b) For e.g. $20=(\text { S.F. })^{3} \times 100$

For $20 / 100=(b / 2.5)^{3}$
For $\quad 0.58=b / 2.5$
For $\quad 1.45 \mathrm{~cm}=b \quad$ and $b=15 \mathrm{~mm}$
Accept legitimate rounding differences leading to 14 mm .
10. For $c=42$

For $\quad m=(42-28) \div(0-20)$, stated or implied
For $\quad m=-0.7$
For $\quad d=-0.7 t+42$
[KU 4]
N.B. For $y=-0.7 x+42$
$0 / 1$
11. For $\tan x^{\circ}=0.75$

For $\quad x^{\circ}=36.9^{\circ} \quad\left(\right.$ or $\left.37^{\circ}\right)$
For $\quad x^{\circ}=216.9^{\circ}\left(\right.$ or $\left.217^{\circ}\right)$
[KU 3]
12. For deducing that angle THP $=36^{\circ}$

For knowing to use sine rule and attempting to substitute values
For $\frac{\mathrm{PH}}{\sin 102^{\circ}}=\frac{90}{\sin 36^{\circ}}$ or equiv.
For $\quad \mathrm{PH}=149.7 \mathrm{~km}($ or 150 km$)$
[KU 4]
a) For $600 \times 1.6 \mathrm{p}=960$ p (or $£ 9.60$)

For $2200 \times 1.1 \mathrm{p}=2420$ p (or £24.20)
For adding service charge of $£ 8.50$ to previous charges to get total bill of $£ 42.30$
b) For appearance of both 9.60 and $8.50\left(1^{\text {st }} 600\right.$ units $\left.+\mathrm{s} / \mathrm{c}\right)$ (or $18.10-£$ sign may be included.)
$\begin{array}{lcccl}\text { For } & \text { " of }(U-600) \times 0.011 \text { (no } £ \text { sign required) } & \ldots . \text { (1) } \\ \text { For } & \text { "tidying up" to give } C=0.011 U+11.5 \text { or equiv. } & \ldots . \text { (1) } & {[R A 3]}\end{array}$
14. a) For $(2 x-5)(x-2)$
b) For $(x-2)(x+2)$

For simplifying to get $\frac{2 x-5}{x+2}$ (Ignore further cancelling)
[KU 3]
15.
a) For $\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9}=\ldots$

For $\quad . .=1.48$ (or 1.5)
b) For $\frac{n}{n-1} \times \frac{n}{n+1} \quad$ (1 mark for each fraction)
c) For $\frac{n-1}{n} \times \frac{n+1}{n} \quad$ (1 mark for each fraction)
.... (2) [RA 6]
16. For Area of base $=25 \mathrm{~cm}^{2}$

For $s^{2}=6.5^{2}-2.5^{2}$ where $s=$ sloping height
For $\quad s=6 \mathrm{~cm}$
For vertical height $\boldsymbol{h}=5.5 \mathrm{~cm}$ (or 5.45 cm)
For \quad Volume $=1 / 3 \times 25 \times 5.5=46 \mathrm{~cm}^{3}$
.... (1) [RA 5]
17. a) For 30 matches
b) For attempting to use sim. equations

For e.g. $3=a \times 1^{2}+b \times 1 \quad$ i.e. $3=a+b$ and then similarly, with e.g. the $2^{\text {nd }}$ diagram $9=4 a+2 b$

For solving to find $a=1.5, b=1.5 \quad$ (1 mark each)
.... (2) [RA 6]

Totals	
KU	RA
45	40

