Credit Mathematics - Practice Examination D

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

- 1. Answer as many questions as you can.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. You may use a calculator

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc\cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$

A microwave oven has a 52 cm door which is designed in such a way that the door will swing, at most, 48cm from the oven, as shown in the diagram below. (viewed from **above**)

- (a) Show that the maximum angle the door can swing through is 67° (given to the nearest whole number of degrees)
- (b) What area will be swept out when the door swings through this angle ?
- 6. Solve algebraically the equation $3p^2 + 2p 4 = 0$, giving your answers correct to 1 decimal place.

7.

A farmer wishes to test the effect of a new fertilizer on his crops. To compare yields, he splits a triangular piece of land into two equal areas by constructing a fence along BT. Each of the two smaller triangles is now "half" the area of the original triangle.

Given that AB = 50 metres, AC = 90 metres and that the angle $BAC = 60^{\circ}$, **calculate** the length of AT.

4

KU RA

3

3

4

1.	For = $8x + 4$ For $-15 = 3x$ or $15 =$ For $-5 = x$	-3 <i>x</i>	(1) (2) (1)	[KU 4]
2	a) (i) For $f(2) = 7$ (ii) For $f(\sqrt{2}) = 3$		(1) (1)	[KU 2]
	b) For $2t^2 - 1 = 1$ For $t^2 =$ For <u>two</u> answers		(1) (1) (1)	[KU 3]
3	For area of cire	cm stated / implied cle = 28.24 hare = 36 and shaded area = 7.74 sq. cm.	(1) (1) (1)	[KU 3]
	b) For $7.74/36 \times$ For %ge = 21.		(1) (1)	[KU 2]
	c) For area of squa For area of circ For $A = 4r^2 - c$		(1) (1) (1)	[RA 3]
	d) For $P = r^2(4 - For canceling do$	π)/ 4 r^2 x 100 own to $P = 25 (4 - \pi)$	(2) (1)	[RA 3]
4.	For 1.04 stated / implie For 1.04 3 stated / implie For £630 (or the unro	ed	(1) (1) (1)	[KU 3]
5.	a) For hypotenuse For $\sin x = 48/3$ For $x = 67^{\circ}$	= 52cm, stated / implied	(1) (1) (1)	[KU 3]
	b) For $A = 67 / 36$ For 3.14×52^2 For Area = 158	$10 \times \dots$ 1 cm^2 (accept correct, unrounded answers)	(1) (1) (1)	[KU 3]
6		 -4, stated / implied on of above into quadratic formula (s/i) 	(1) (1) (1) (1)	[KU 4]

Credit Mathematics - Practice Exam D

Marking Scheme

7.	For e.g	. Area of \triangle ABC = $\frac{1}{2}$ x 50 x 90 x sin60° = 1948.6m ² (or 1949)) (1)	
	For	$\frac{1}{2}$ of above area = 974.3 m ² (or 974.50	(1)	
	For	re-using area formula i.e. $974.3 = \frac{1}{2} \times 50 \times AT \times \sin 60^{\circ}$	(1)	
	For	AT = 45m	(1)	[RA 4]

8.	a)	For $F = 2C + 30$ or equivalent	(1)	[KU 1]
	b)	For $2C + 30 = 1.8C + 32$	(1)	
		For $0.2C = 2$	(1)	
		For $C = 10$	(1)	[RA 3]
	''C = 1	10" unsupported by equation work0/3; $C = 10$ " checked in/into both equation	juations1/3	

For scale factor = 2.0/2.5 = 0.8, stated or implied 9. (1) a) For $V = 0.8^3$... For $V = 0.8^3 \times 100 = 51$ ml (Accept 51.2ml) (1) (1) [KU 3] e.g. $20 = (S.F.)^3 x 100$ $20 / 100 = (b / 2.5)^3$ For b) (1) For (1) For 0.58 = b/2.5.... (1) For 1.45 cm = band b = 15mm [RA 4] (1) Accept legitimate rounding differences leading to 14mm.

10.	For	c = 42	(1)	
	For	$m = (42 - 28) \div (0 - 20)$, stated or implied	(1)	
	For	m = -0.7	(1)	
	For	d = -0.7t + 42	(1)	[KU 4]
	N.B.	For $y = -0.7x + 42$ $0/1$		

11. For	$\tan x^{\circ} = 0.75$	(1)
For	$x^{\circ} = 36.9^{\circ}$ (or 37°)	(1)
For	$x^{\circ} = 216.9^{\circ}$ (or 217°)	(1) [KU 3]

12.	For For	deducing that angle THP = 36°	\dots (1)	
	For	knowing to use sine rule and attempting to substitute values PH 90	(1)	
	For	$\frac{1}{\sin 102^\circ} = \frac{1}{\sin 36^\circ}$ or equiv.	(1)	
	For	PH = 149.7 km (or 150 km)	(1)	[KU 4]

13.	a)	For $600 \ge 1.6p = 960p$ (or £9.60) For $2200 \ge 1.1p = 2420p$ (or £24.20) For adding service charge of £8.50 to previous charges to total bill of £42.30	(1) (1) get (1)	[RA 3]
	b)	For appearance of both 9.60 and 8.50 $(1^{st} 600 \text{ units} + \text{s/c})$ (or 18.10 -£ sign may be included.)) (1)	
		For " of $(U - 600) \ge 0.011$ (no £ sign required) For "tidying up" to give $C = 0.011U + 11.5$ or equiv.		[RA 3]
14.	a)	For $(2x - 5)(x - 2)$	(1)	
	b)	For $(x - 2)(x + 2)$	(1)	
	,	For simplifying to get $\frac{2x-5}{x+2}$ (Ignore further cancelling)	(1)	[KU 3]
15.	a)	For $\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} = \dots$	(1)	
		For= 1.48 (or 1.5)	(1)	
	b)	For $\frac{n}{n-1} \times \frac{n}{n+1}$ (1 mark for each fraction)	(2)	
	c)	For $\frac{n-1}{n} \times \frac{n+1}{n}$ (1 mark for each fraction)	(2)	[RA 6]
16.	For For For For For	Area of base = 25 cm^2 $s^2 = 6.5^2 - 2.5^2$ where s = sloping height s = 6cm vertical height $h = 5.5$ cm (or 5.45cm) Volume = $1/3 \times 25 \times 5.5 = 46$ cm ³	\dots (1) \dots (1) \dots (1) \dots (1) \dots (1)	[RA 5]
17.	a)	For 30 matches	(1)	
	b)	For attempting to use sim. equations	(1)	
		For e.g. $3 = a \ge 1^2 + b \ge 1$ i.e. $3 = a + b$ and then similarly, with e.g. the 2^{nd} diagram $9 = 4a + 2b$	(2)	
		For solving to find $a = 1.5$, $b = 1.5$ (1 mark each)	(2)	[RA 6]

als
RA
40