Credit Mathematics - Practice Examination C

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

- 1. Answer as many questions as you can.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. You may use a calculator

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$

1. Solve the following inequality

 $5(2t-1) \ge 4t-23$.

2. By the end of each week, a garden pond has lost 4% of the volume it had at the beginning of that week. If its volume at the beginning of *week 1* was 26,000 litres, and it continues to lose 4% of its previous volume per week, how many litres will it have by the end of the fourth week? (Answer to the nearest 100 litres).

40cm

85cm

 105°

A man is building a kite for his son. Its sides are 40 cm and 85 cm long and the angle between these two sides is 105°, as shown.
He finds a rod one metre long and intends to use it for the long diagonal of the kite.

Will this rod be long enough ?

Find the cost of each sweet.

5. The empty water jug shown across is being filled with water at a constant rate. Which of the four graphs below best show how the water level, *h*, is changing with time, *t* ? Explain your answer fully.

KU RA

10. (a) Factorise $2a^2 - 11a + 12$

(b) Solve
$$\frac{x-2}{5} = \frac{2-x}{4}$$
, for x.

(c) Change the subject of the formula $P = 2\pi r^2 + t$ to r.

17.

Credit Mathematics - Practice Exam C

Marking Scheme

1.	For $10t - 5 \ge 4t - 23$		(1)	
	For $6t \ge -18$		(2)	
	For $t \ge -3$		(1)	[KU 4]
n	For 0.06		(1)	
2.	FOI 0.96		(1)	
	For $(0.96)^{+}$ (or equiv.)		(1)	
	For 22 100 <i>litres</i> (ignore roundings)		(1)	[KU 3]
3.	For knowing to use Cosine Rule		(1)	
	For $d^2 = 40^2 + 85^2 - 2x 40 \times 85 \times \cos 105$		(1)	
	For $= 1600 + 7255 - (-1760)$		(1)	
	For $= 10585$		(1)	
	For $d = 102.9$ cm and "No"		(1)	
	Accept any reasonable roundings.			[KU 5]
4	Even $5y + 2t = 222$ and $4y + 2t = 210$ (or equiv.)		(1)	
4.	For $15y + 6t = 660$ (or equiv.)		(1) (1)	
	For $9y + 6t = 438$ (01 equiv.)	•••••	(1) (1)	
	For $3v + 0i - 438$	•••••	(1) (1)	
	For $v = 23$ paper	•••••	(1) (1)	
	For $v = 35$ pence	•••••	(1) (1)	[D/6]
	For $l = 29$ pence	•••••	(1)	
5.	For answer Graph C		(1)	
	For explaining how each of the 3 parts of the jug			
	are related to the 3 respective parts of the graph		(3)	[<i>RA 4</i>]
6.	For knowing to use the quadratic formula		(1)	
	For calculating discriminant 7.75 (or equiv.)		(1)	
	For correct sub. to $x = (2 \pm 7.75) \div 4$ (or equiv)		(1)	
	For 2.44 and -1.44		(1)	
	For 2.4 and -1.4		(1)	[KU 5]
7.	Give anv correct version 4 marks. For example :			
	For changing to km/h i.e. 10800×10^5 km/h		(1)	
	For dividing	•••••	(1) (1)	
	For $27,000$		(1) (1)	
	$F_{01} = 27000$	•••••	(1)	
	For $2 \cdot 7 \times 10^{\circ}$ times		(1)	[KU 4]
8.	(a) For $T = k L / \sqrt{h}$		(1)	
	For $14 = k \ge 20/\sqrt{6.25}$		(1)	
	For $k = 1.75$		(1)	[KU 3]
	(b) For $T = 1.75 \times 15 / \sqrt{2.25}$		(1)	
	For $T = 17.5$ secs		(1)	[KU 2]

9.	For area of square = 49 For area of triangle = $0.5 \times 7 \times DC \times sin 110^{\circ}$		(1) (1)	
	For $= 3.3 \times DC$ For $DC = 14.9 \text{ m}$		(1) (1)	[<i>RA</i> 4]
10.	(a) For $(2a - 3)$ and $(a - 4)$ (b) For $4(x - 2) = 5(2 - x)$ For $4x - 8 = 10 - 5x$	······	(2) (1) (1)	[KU 2]
	For $9x = 18$ For $x = 2$ (c) For $P-t = 2\pi r^2$	·····	(1) (1) (1)	[KU 4]
	For $(P-t)/2\pi = r^2$ For $r = \sqrt{(P-t/2\pi)}$		(1) (1)	[KU 3]
11.	(a) For photo ratio of $18/12$ or 1.5 For noting that $18/12 \neq 24/18$ so, no similarity (b) For $24 - 2w$ and $18 - 2w$ For $\frac{24-2w}{10-2} = \frac{4}{2}$ (or equivalent equ. const.)	······	 (1) (1) (1) (1) 	[KU 2]
	18-2w 3 For cross mult. to solve (or equiv.) For $w = 0$ and conclusion		(1) (1)	[<i>RA 4</i>]
12.	For Area = $\frac{1}{2}ab\sin C$ (or equiv.) For = 0.5 x 2.5 x 2.5 x Sin 60 For = 2.7 sq. cm For $V = 2.7 x 14$ For $V = 37.8 \text{ cm}^3$	 	 (1) (1) (1) (1) (1) 	[<i>RA 5</i>]
13.	(a) For $f(-1) = 1$ and $f(15) = 7$ (b) For $16 = \sqrt{(3t + 4)}$ For $256 = 3t + 4$ For $84 = t$	 	(2) (1) (1) (1)	[KU 2] [KU 3]
14.	For organised approach e.g. trying $f(2.0)$, $f(2.1)$, etc. For $2.1 \le x \le 2.2$ For $x = 2.1$ to one decimal place	······	(1) (1) (1)	[KU 3]
15.	(a) For $(-x - 2)(x - 6) = 0$ For $x = -2$ or $x = 6$ For A is (6,0) and distance = 3000m		(1) (1) (1)	[KU 3]
	(b) For e.g. axis of symmetry is $x = 2$ For $h = 16$ when $x = 2$ For the maximum height is 1600m	······	(1) (1) (1)	[KU 3]

16.	(a)	For 1+3+	3 - 1)		(1)	
		For			(1)	[<i>RA 2</i>]
	(b)	For $p = 1$			(1)	[RA 1]
	(c)	For realising that the solution involves the	on of	(4)		
		$(3^{n} - 1)/(3 - 1) - 3280$ [from (a) a For $3^{8} + 3^{9} + {}^{10} + \dots + 3^{n-2} + 3^{n-1}$	and (b)]		(1)	
		$\dots = (3n - 1) / 2 - 3298$			(1)	
		For reaching the final answer of $(3^n - 6)$	561)/2		(1)	[<i>RA 3</i>]
17.	(a)	For $OQ = 5$ and using tangent			(1)	
		For $\tan POQ = 10/5$ (or 2)			(1)	
		For angle POQ = 63.4°			(1)	[<i>RA 3</i>]
	(b)	For angle OPQ = angle OPR (kite !)		(1)	
		For angle $PRQ = 36.8^{\circ}$			(1)	[<i>RA 2</i>]
	(c)	For angle QPO = $90^{\circ} - y$			(1)	
		For e.g. $90^{\circ} + 2(90 - y)^{\circ} + x^{\circ} = 180^{\circ}$	0		(1)	
		For $x = 2y - 90$			(1)	[<i>RA 3</i>]
18	(a)	For Area of circle (large) = 400π			(1)	
100	()	For Area of circle (small) = 144π		•••••	(1)	
		For Area of tape 256π			(1)	[RA3]
	(h)	For Area of circle (larger) = 289π		•••••	(1)	
	(0)	For new area of tape = 145π (i.e. 289π	τ_144π	•)	(1)	[RA2]
	(c)	For tane used up during playing = 111	π	,)	(1)	
		For e_{α} correct ratio of tane used up i.e. 1	$11\pi / 25$	 6 π	(1)	
		For $111\pi/256\pi$ v 45 mins = 10.5 mi	110720	0 /	(1)	[2 / 2]
		101 1111 / 230 / x 43 mms = 19.3 mm	1115		(1)	