# Credit Mathematics - Practice Examination C 

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

## MATHEMATICS Standard Grade - Credit Level

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

## FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

1. Solve the following inequality

$$
5(2 t-1) \geq 4 t-23 .
$$

2. By the end of each week, a garden pond has lost $4 \%$ of the volume it had at the beginning of that week. If its volume at the beginning of week 1 was 26,000 litres, and it continues to lose $4 \%$ of its previous volume per week, how many litres will it have by the end of the fourth week? (Answer to the nearest 100 litres).
3. A man is building a kite for his son. Its sides are 40 cm and 85 cm long and the angle between these two sides is $105^{\circ}$, as shown.
He finds a rod one metre long and intends to use it for the long diagonal of the kite.

Will this rod be long enough ?

4. On his birthday, Albert decides to buy sweets for himself and his 6 friends at the school tuckshop.
When he buys 5 Venus bars and 2 Tropics, he receives 77 pence change from $£ 3$. The next day, his friend Fred, decides to return Albert's generosity. When Fred buys 4 Venus bars and 3 Tropics, he receives 81 pence change from $£ 3$.

Find the cost of each sweet.
5. The empty water jug shown across is being filled with water at a constant rate. Which of the four graphs below best show how the water level, $h$, is changing with time, $t$ ?
Explain your answer fully.



A


B


C


D
6. Solve the equation $2 x^{2}-2 x-7=0$, giving your answers to 1 decimal place.
7. Given that the earth is a sphere of circumference $40,000 \mathrm{kms}$ and that the speed of light is $3 \times 10^{5} \mathrm{~km}$ per second, calculate how many times light can travel round the earth in one hour. Give your answer in scientific notation.
8. The time, $T$ seconds, taken for a piece of luggage to slide down the luggage chute of an aeroplane varies directly as the length, $l$ metres, of the chute and inversely as the square root of $h$, the height in metres of one end of the chute above the other.

If it takes 14 seconds for a suitcase to travel down a 20 metre chute with one end $6 \cdot 25$ metres above the other :

(a) Find an equation connecting $T, h$ and $l$.
(b) How long will it take for a suitcase to slide down a chute 15 metres long if $h=2.25$ metres ?
9.


The outline of a children's play area, which is not drawn to scale, is shown above. It consists of a square of side 7 metres and an obtuse angled triangle.
Angle BDC $=110^{\circ}$.
Given that the area of the triangle is equal to the area of the square, find the length of DC.
10. (a) Factorise $2 a^{2}-11 a+12$
(b) Solve $\quad \frac{x-2}{5}=\frac{2-x}{4}$, for $x$.
(c) Change the subject of the formula $P=2 \pi r^{2}+t$ to $r$.
11. A rectangular frame, $24 \mathrm{~cm} \times 18 \mathrm{~cm}$, contains a rectangular photograph. The frame gives the photograph a border of 3 cm all around, as shown opposite.
(a) The length - to - breadth ratio of the frame is $\frac{24}{18}$.

By considering the length - to - breadth ratio of the
 photograph, show that the frame is not similar to the photograph.
(b) Show that, if there is a border of width w centimetres around the photograph, then the photograph and the frame can never be similar.

24 cm

12.


The diagram above shows the net of a solid along with the 3-dimensional solid formed by this net.
Calculate the volume of the solid, given that its net is formed by three equal rectangles, each $14 \mathrm{~cm} \times 2.5 \mathrm{~cm}$, and two equilateral triangles.

| KU |  |
| ---: | :--- |
|  |  |
| 2 |  |

Given that this curve has a root between 2 and 3 , find this root correct to 1 decimal place.

14. The diagram opposite shows part of the graph of

$$
y=x^{3}-6 x+3
$$

(a) Find the values of
(i) $f(-1)$
(ii) $f(15)$.
(b) If $f(t)=16$, find the value of $t$.
15.



When a test rocket is fired, its trajectory follows the shape of a parabola.
When this flight path is transferred to a coordinate diagram, as shown above, then its path is described by the formula

$$
h=-x^{2}+4 x+12
$$

(a) By establishing the coordinates of A, state how far the rocket has travelled horizontally from its starting point. (On the $x$-axis, 1 unit $=500$ metres).
(b) Find the maximum height of the rocket. (On the $h$-axis, 1 unit $=100$ metres).
16. The sum of a series of numbers of the form $1+x+x^{2}+x^{3}+\ldots . .+x^{n-2}+x^{n-1}$ can be found by using the formula

$$
1+x+x^{2}+x^{3}+\ldots .+x^{n-2}+x^{n-1}=\frac{x^{n}-1}{x-1}
$$

Example Find the sum of $1+2+2^{2}+2^{3}+2^{4}+2^{5}$ by using the above formula.
Solution $\quad 1+2+2^{2}+2^{3}+2^{4}+2^{5}=\frac{2^{6}-1}{2-1}=\frac{64-1}{1}=63$
(a) Use the method above to find the sum of $1+3+3^{2}+3^{3}+\ldots . .+3^{7}$.
(b) The sum $1+3+3^{2}+3^{3}+\ldots . .+3^{n-2}+3^{n-1}=\frac{3^{p}-1}{3-1}$.

Write down $p$ in terms of $n$.
(c) Hence, by considering your answers to both (a) and (b) above, show that

$$
3^{8}+3^{9}+3^{10}+\ldots . .+3^{n-2}+3^{n-1}=\frac{3^{n}-6561}{2}
$$

17. 



In the diagram above, two tangents are drawn from the point P to the semi-circle centre O . The semi-circle has a diameter of 10 cm . Angle $\mathrm{PQR}=90^{\circ}$ and $\mathrm{PQ}=10 \mathrm{~cm}$.
(a) Calculate the size of angle POQ, giving your answer correct to one decimal place.
(b) Hence, or otherwise, find the size of angle PRQ.
(c) Show that, if angle $\mathrm{POQ}=y$ and angle $\mathrm{PRQ}=x$, then $x=2 y-90$.
18. Diagram 1 shows the outline of an ordinary cassette.

It consists of two identical "ring" shapes, each formed by two concentric circles with the outer circle having a radius of 12 mm as shown.
The cassette tape is attached to the left hand ring and has a width of 8 mm .
diagram 1

diagram 2

(a) Show that the area of tape in diagram 1 is $256 \pi$ square millimetres.
(b) After the tape has been playing for some time, the 8 mm thick band of tape (on the left hand ring) has been reduced to 5 mm . (see diagram 2)

Find, in terms of $\pi$, the area of tape now attached to the left hand ring.
(c) When the tape on the left hand ring is 8 mm broad, it has a playing time of 45 minutes.

Calculate the number of minutes it takes for the tape to reduce its width to 5 mm .
(Assume that the time played is proportional to the area of tape used)

1. For $10 t-5 \geq 4 \mathrm{t}-23$
For $\quad 6 t \geq-18$
For $\quad t \geq-3$
2. For 0.96
For ( 0.96$)^{4}$ ( or equiv.)
For 22100 litres (ignore roundings )
(1)
3. For knowing to use Cosine Rule
For $d^{2}=40^{2}+85^{2}-2 \mathrm{x} 40 \times 85 \times \operatorname{Cos} 105 \quad$.......... (1)
For $=1600+7255-(-1760)$
For $=10585$
For $d=102.9 \mathrm{~cm}$ and " No "
Accept any reasonable roundings.
4. For $\ldots 5 v+2 t=223$ and $4 v+3 t=219$ (or equiv.)
For $15 v+6 t=669 \quad$ (or equiv.)
For $\quad 8 v+6 t=438$
For $\quad 7 v=231$
For $\quad v=33$ pence
For $\quad t=29$ pence .......... (1)
5. For answer .... Graph C
For explaining how each of the 3 parts of the jug are related to the 3 respective parts of the graph
6. For knowing to use the quadratic formula
For calculating discriminant 7.75 (or equiv.)
For correct sub. to $x=(2 \pm 7.75) \div 4$ (or equiv)
For 2.44 and -1.44
For 2.4 and -1.4
[ KU 4 ]
[ KU 3]
[ KU 5]
[RA6]
[ RA 4]
[ KU 5]
7. Give any correct version ..... 4 marks. For example :

For changing to $\mathrm{km} / \mathrm{h}$ i.e. $10800 \times 10^{5} \mathrm{~km} / \mathrm{h}$
For dividing
For 27000
For $2.7 \times 10^{4}$ times
[ KU 4]
8. (a) For $T=k L / \sqrt{ } h$

For $14=k \times 20 / \sqrt{6} .25$
For $k=1.75$
(b) For $T=1.75 \times 15 / \sqrt{ } 2.25$
(1)

For $\quad T=17.5 \mathrm{secs}$
9. For area of square $=49$

For area of triangle $=0.5 \times 7 \times \mathrm{DC} \times \sin 110^{\circ} \quad$.......... (1)
For $\quad=3.3 \times \mathrm{DC} \quad$.......... (1)
For $\quad \mathrm{DC}=14.9 \mathrm{~m}$
(1)
[RA4]
10. (a) For $(2 a-3)$ and $(a-4)$
[ KU 2 ]
(b) For $4(x-2)=5(2-x) \quad$.......... (1)

For $4 x-8=10-5 x$.......... (1)
For $9 x=18$.......... (1)
For $x=2$.......... (1)
(c) For $P-t=2 \pi r^{2} \quad$.......... (1)

For $(P-t) / 2 \pi=r^{2} \quad$.......... (1)
For $\quad r=\sqrt{ }(P-t / 2 \pi) \quad$.......... (1)
11. (a) For photo ratio of $18 / 12$ or 1.5
(1)

For noting that $18 / 12 \neq 24 / 18$ so, no similarity
(b) For $24-2 w$ and $18-2 w$

For $\frac{24-2 w}{18-2 w}=\frac{4}{3} \quad$ (or equivalent equ. const.)
For cross mult. to solve (or equiv.)
For $w=0$ and conclusion
[ KU 2 ]
[ KU 4]

[^0]
[ KU 3]




1)
.


1)

[^1]16.

17. (a) For $\mathrm{OQ}=5$ and using tangent
For $\tan \mathrm{POQ}=10 / 5$ ( or 2 )
For angle $\mathrm{POQ}=63.4^{\circ} \quad$.......... (1)
[ RA 3]
(b) For angle $\mathrm{OPQ}=$ angle OPR (kite!) .......... (1)
For angle PRQ $=36.8^{\circ}$.......... (1)
[ RA 2]
(c) For angle $\mathrm{QPO}=90^{\circ}-y \quad$.......... (1)
For e.g. $90^{\circ}+2(90-y)^{\circ}+x^{\circ}=180 \quad$.......... (1)
For $x=2 y-90$.......... (1)
[ RA 3]
18. (a) For Area of circle (large ) $=400 \pi$
For Area of circle $($ small $)=144 \pi$
For Area of tape $256 \pi$
[RA3]
(b) For Area of circle (larger) $=289 \pi \quad$.......... (1)
For new area of tape $=145 \pi$ (i.e. $289 \pi-144 \pi$ ) ..... (1)
[RA 2 ]
(c) For tape used up during playing $=111 \pi \quad$.......... (1)
For e.g. correct ratio of tape used up i.e. $111 \pi / 256 \pi$..... (1)
For $111 \pi / 256 \pi \times 45 \mathrm{mins}=19.5 \mathrm{mins} \quad . . . . . . . .$. (1)
[RA3]
(If $145 \pi$ is used in ratio for ans. of 25.5 minutes, 2 out of 3 marks)

* ( If $\pi=3.14$ is used for multiplying / division in a correct manner ... $\mathbf{1}$ mark off. )



[^0]:    

[^1]:    都

