Credit Mathematics - Practice Examination B

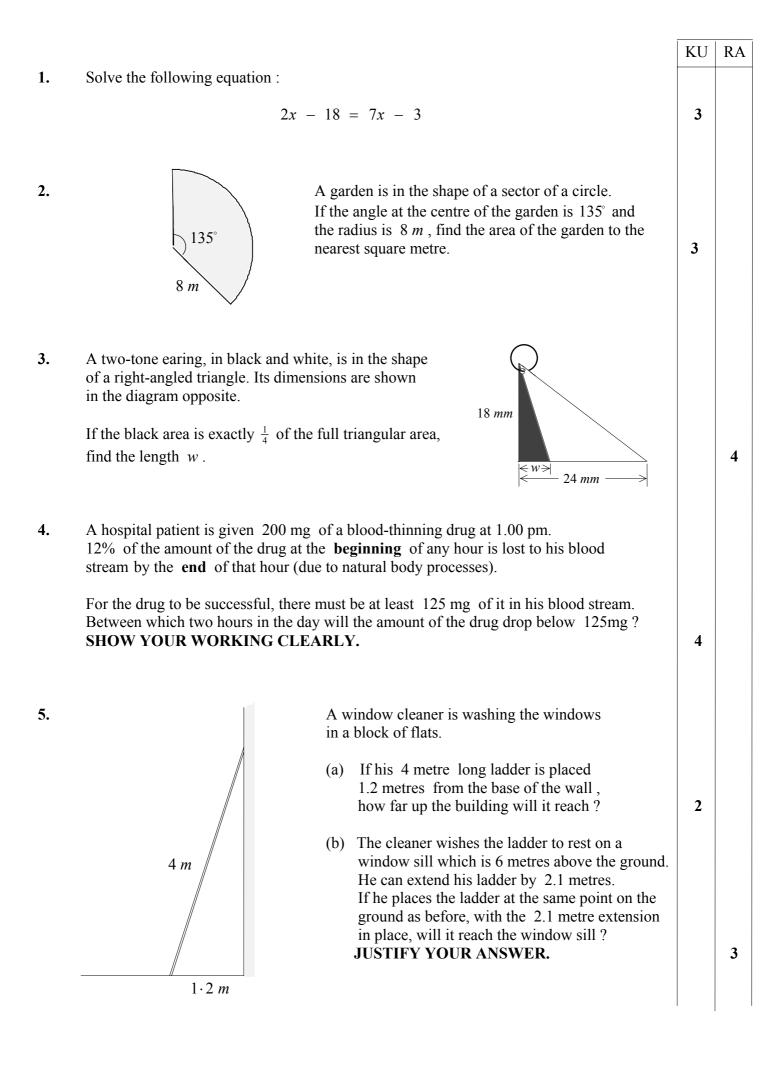
Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

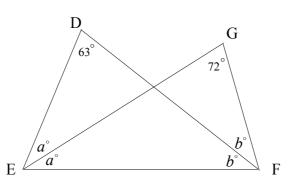
MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

- 1. Answer as many questions as you can.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. You may use a calculator

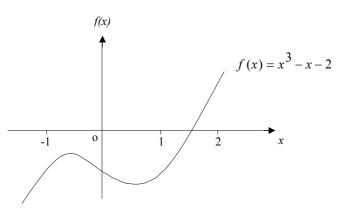

FORMULAE LIST


The roots of $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$



In the diagram above, which is not drawn to scale, the line DF bisects the angle GFE and the line GE bisects the angle DEF.

- (a) In the triangle DEF, show that 2a + b = 117.
- (b) Use triangle GFE to form another equation connecting a and b and hence, or otherwise, find the values of a and b.
- 7. Below is part of the graph of $f(x) = x^3 x 2$.

6.

It has a root between x = 1 and x = 2. Use iteration to find this root, correct to 1 decimal place. SHOW ALL YOUR WORKING CLEARLY.

8. (a) Factorise
$$2p^2 - 9p + 4$$

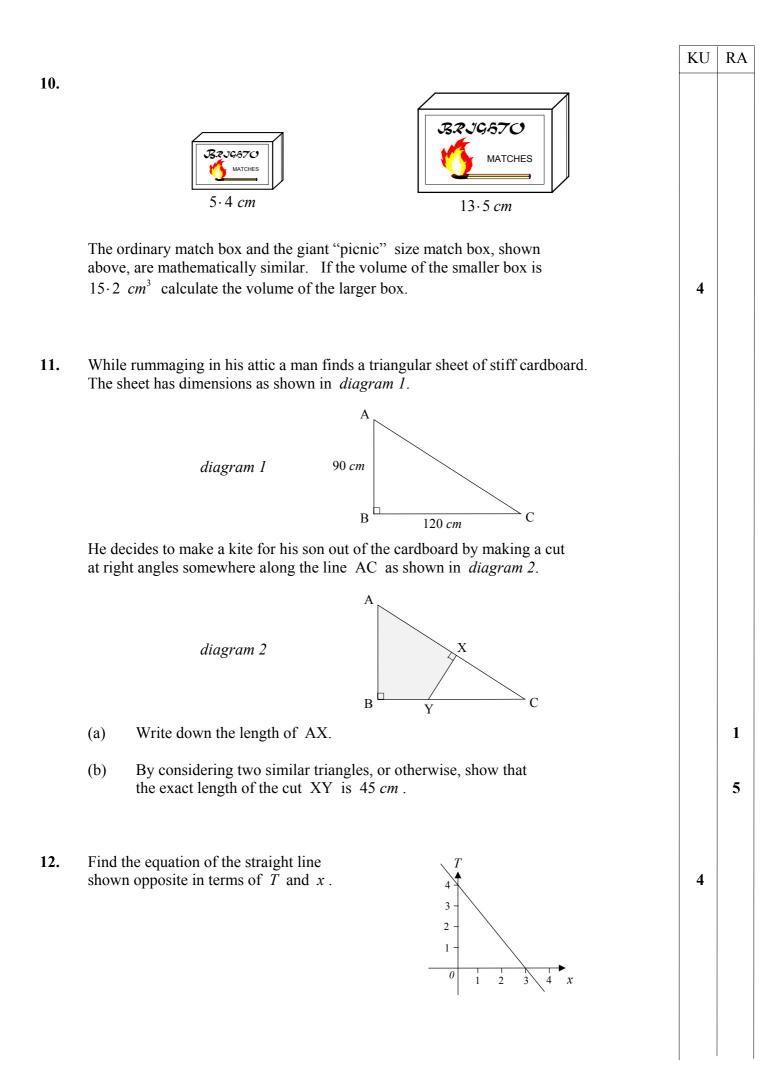
- (b) Express $\frac{3}{x-1} \frac{2}{x}$ as a single fraction in its simplest form.
- (c) The planet Pluto is about $5 \cdot 91 \times 10^9 \ km$ from the sun. Light travels from the sun at a speed of $3 \times 10^5 \ km \ per \ sec \ ond$. How many hours does it take for the sun's light to reach Pluto?

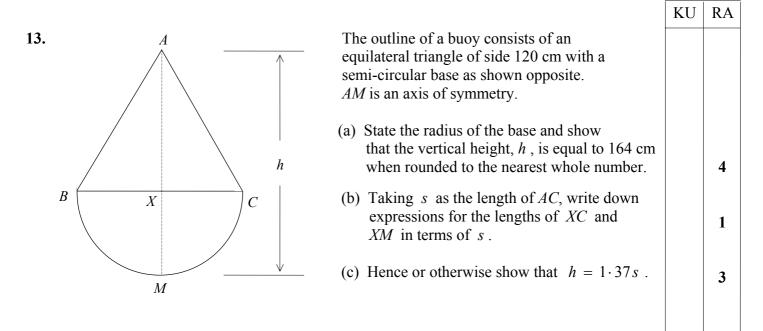
9. Show that, if
$$x = yz$$
 and $y = \frac{z}{x^2}$, then $x = \frac{1}{y^2}$

KU

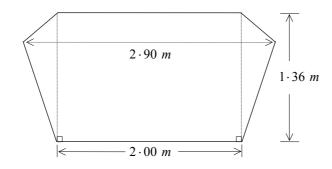
RA

5

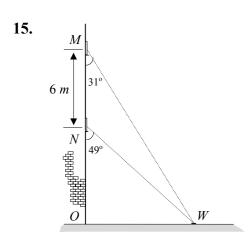

3


2

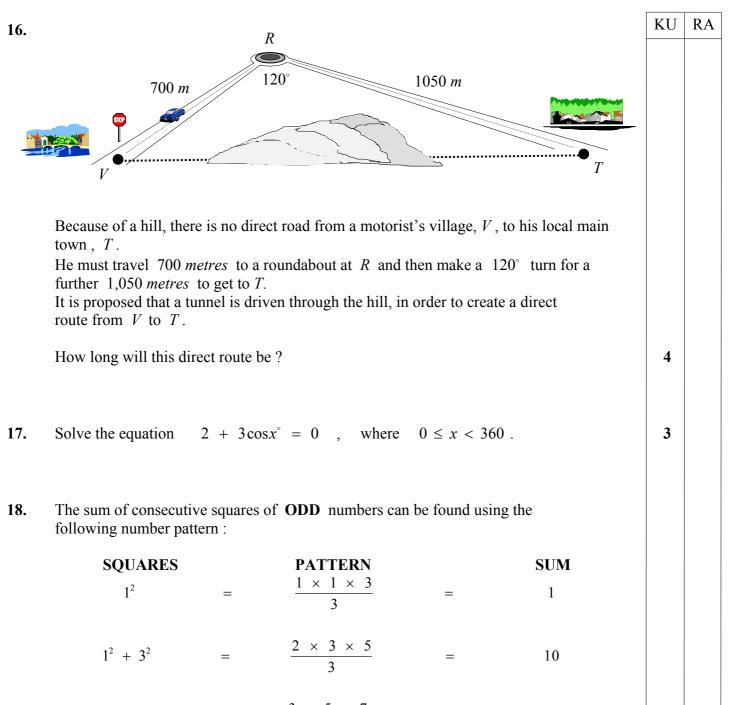
3


3

4



14. A skip is a metalic container, used for the collection and eventual disposal of rubbish from building sites, factories, etc. The cross-section of one such skip is shown below. The cross-section is symmetrical.



- (a) Find the area of this cross-section.
- (b) If the skip is $2 \cdot 15$ metres in depth, calculate the volume of the skip, giving your answer correct to the nearest whole number of cubic metres.

From a window at M in a building, a man spots a wallet lying at W in the carpark. The same wallet is spotted by his colleague from the window at N which is 6 metres below window M. If the angles between the building and their lines of sight are 31° and 49° respectively, find the distance from the wallet to the base of the wall. 4

2

$$1^2 + 3^2 + 5^2 = \frac{3 \times 5 \times 7}{3} = 35$$

$$1^{2} + 3^{2} + 5^{2} + 7^{2} = \frac{4 \times 7 \times 9}{3} = 84$$

- (a) Write down a similar expression for the sum of odd squares up to 13.
- (b) By examining the connection between the first 2 numbers of the numerator (top line) of the fractions under **PATTERN**, or otherwise, write down an expression for S, the sum of the first n odd squares, in terms of n.

[END OF QUESTION PAPER]

2

3

Credit Mathematics - Practice Exam B

Marking Scheme

1.		For $-5x = 15$ (2) x = -3 (1)	[3 marks KU]
2.		For using $\frac{135}{360}$ (1) For correct subst (1) For answer $A = 75 \cdot 36 \text{ m}^2$ (1) (Accept all correct roundings)	[3 marks KU]
3.		For $A (large) \Delta = 216 \ mm^2$ (1)	
		For $\frac{1}{4} A$ (large) $\Delta = 54 mm^2$ (1)	
		For $\frac{1}{2} \times w \times 18 = 54$ (1)	
		For $w = 6 mm$ (1)	[4 marks RA]
4.		For 12% of 200mg = 24mg (or 0.88 as a multiplier)	[4 marks KU]
5.	(a)	For $4^2 = 1 \cdot 2^2 + d^2$ (1) For $d = 3 \cdot 8 m$ (1)	[2 marks KU]
	(b)	For $6 \cdot 1^2 = 1 \cdot 2^2 + d^2$ (1) For $d = 5.98 m$ (1) For consistent conclusion (1)	[3 marks RA]
6.	a)	For $2a + 63 + b = 180$ (or equiv) (1) For $2a + b = 117$ (1)	[2 marks RA]
	b)	For $2b + a + 72 = 180$	[5 marks RA]
7.		For methodical approach	[3 marks KU]

8.	(a)	For each factor (1 mark) i.e. $(2p - 1)(p - 4)$		(2)		[2 marks KU]
	(b)	For correct denom. i.e. $x(x - 1)$ For correct num. i.e. $3x - 2(x - 1)$ For answer $\frac{x+2}{x(x-1)}$ (<i>Expansion of brackets is O.K. but 1 off for</i>		(1)(1)	ing)	[3 marks KU]
	(c)	For $(5 \cdot 91 \times 10^9) \div (3 \times 10^5)$, stated or im For $1 \cdot 97 \times 10^4$ or 19700 sec onds For answer = $5 \cdot 5$ hours	plied		(1) (1)	[3 marks KU]
9.		For eliminating z e.g. $yx^2 = z$ For $x = y(yx^2)$ For $1 = y^2x$ For $\frac{1}{y^2} = x$		(1) (1)		[4 marks RA]
10.		For S.F. = $2 \cdot 5$ For Vol SF = $2 \cdot 5^3 = 15 \cdot 625$ For $V = 15 \cdot 625 \times 15 \cdot 2$ For $V = 237 \cdot 5 \ cm^3$	······	(1) (1)		[4 marks KU]
11.	(a) (b)	For $AX = 90 \ cm$ There are a number of solutions. However, all will depend on finding $AC = 150$ For $AC = 150$ (by Pyth.)	almost			[1 mark RA]
	N.B.	<u>Possible Solution</u> (Similar Δ 's) For use of similar triangles (stated/implied) For $\frac{XY}{90} = \frac{60}{120}$ For ans. $x = 45$ cm Last mark unavailable if previous error		 ured.	(2)	[5 marks RA]
		blutions involving the use of trig functions who an approximate, but inexact, value of $XY =$, give ³ /	5 for part (b)	
12.		For $m = \frac{4-0}{0-3}$ (stated or implied)			(1)	

For	$m = \frac{1}{0-3}$ (stated or implied)	 (1)	
For	$m = -\frac{4}{3}$ (accept -1.33 but <u>not</u> 1.3)	 (1)	
For	C = 4	 (1)	
For	$T = -\frac{4}{3}x + 4$ (accept $y =$)	 (1)	[4 marks KU]

13.	(a)	For $r = 60 \text{ cm}$	(1)	
		For $AX = 104$ cm	(2)	
		For $h = 164 \text{ cm}$	(1)	[4 marks RA]
	(b)	For $XC = XM = \frac{1}{2}s$	(1)	[1 mark RA]
	(c)	For $AX^2 = s^2 - (\frac{1}{2}s)^2$	(1)	
		For $AX = 0.87s$ (or equivalent)	(1)	
		For $h = 1.37s$	(1)	[3 marks RA]
14.	(a)	For Area (side Δ) = $\frac{1}{2} \times 1 \cdot 36 \times 0 \cdot 45 = 0 \cdot 3$	$06 m^2$ (1)	
	()		$0.612 m^2$ (1)	
		-	$2 \cdot 72 m^2$ (1)	
		For total area = $3 \cdot 332 m^2$ (accept approx.)		
			(1)	
	(b)	For V = area x length (stated or implied) = 3	$\cdot 332 \times 2 \cdot 15 \dots \qquad (1)$	
		= $7.1638 m^3$ (or a rounded off figure)	(1)	[2 marks KU]
15.		For $\angle MNW = 131^{\circ}$ and $\angle MWN = 18^{\circ}$ (stated or implied)	(1)
		For $\frac{6}{\sin 18} = \frac{NW}{\sin 31} \left(or \frac{MW}{\sin 131} \right)$	(1)	
	For	$NW = 10 \cdot 0 (or MW = 14 \cdot 7)$	(1)	
		For $OW = 10 \times \cos 41^\circ$ (or $14 \cdot 7 \times \cos 59^\circ$)	· · ·	
		For $OW = 7.5 m$,	
	N.B.	Do not penalize approximations which, when		
	thro	ugh, may lead to - e.g. $OW = 7 \cdot 6 m$		[5 marks RA]
16.		For $VT^2 = 700^2 + 1050^2 - (2 \times 700 \times 1050 \cos \theta)$	(1) (1)	
		For $=$ (-735000)	(1)	
		For $= 2327500$		
		For $VT = 1525 \cdot 6 m$ (or reasonable appro	ximation) (1)	[4 marks KU]
17.		For $\cos x = -\frac{2}{3}$	(1)	
		For $x = 131 \cdot 8^{\circ}$	(1)	
		For $x = 228 \cdot 2^\circ$	(1)	[3 marks KU]
18	(a)	For $1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 + 13^2 = \frac{7 \times 10^2}{10^2}$	$\frac{13 \times 15}{3}$ (2)	
	(b)	$S = \frac{n \times (2n-1) \times (2n+1)}{3}$	5	[5 marks RA]
N		3 not penalise bad form - e.g. 2n - 1+2 for 2n +	1	KU RA
1 .		y 1 mark off for lack of brackets.		
			Totals	44 42