Credit Mathematics - Practice Examination B

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

1. Solve the following equation :

$$
2 x-18=7 x-3
$$

2.

A garden is in the shape of a sector of a circle. If the angle at the centre of the garden is 135° and the radius is $8 m$, find the area of the garden to the nearest square metre.
3. A two-tone earing, in black and white, is in the shape of a right-angled triangle. Its dimensions are shown in the diagram opposite.

If the black area is exactly $\frac{1}{4}$ of the full triangular area, find the length w.

(b) The cleaner wishes the ladder to rest on a window sill which is 6 metres above the ground. He can extend his ladder by 2.1 metres. If he places the ladder at the same point on the ground as before, with the 2.1 metre extension in place, will it reach the window sill?
JUSTIFY YOUR ANSWER.
A window cleaner is washing the windows in a block of flats.
(a) If his 4 metre long ladder is placed 1.2 metres from the base of the wall, how far up the building will it reach ?
For the drug to be successful, there must be at least 125 mg of it in his blood stream. Between which two hours in the day will the amount of the drug drop below 125 mg ? SHOW YOUR WORKING CLEARLY.
5.

6.

In the diagram above, which is not drawn to scale, the line DF bisects the angle GFE and the line GE bisects the angle DEF.
(a) In the triangle DEF, show that $2 a+b=117$.
(b) Use triangle GFE to form another equation connecting a and b and hence, or otherwise, find the values of a and b.
7. Below is part of the graph of $f(x)=x^{3}-x-2$.

It has a root between $x=1$ and $x=2$.
Use iteration to find this root, correct to 1 decimal place.
SHOW ALL YOUR WORKING CLEARLY.
8. (a) Factorise $2 p^{2}-9 p+4$.
(b) Express $\frac{3}{x-1}-\frac{2}{x}$ as a single fraction in its simplest form.
(c) The planet Pluto is about $5.91 \times 10^{9} \mathrm{~km}$ from the sun.

Light travels from the sun at a speed of $3 \times 10^{5} \mathrm{~km}$ per sec ond .
How many hours does it take for the sun's light to reach Pluto?
9. Show that, if $x=y z$ and $y=\frac{z}{x^{2}}$, then $x=\frac{1}{y^{2}}$.
10.

5.4 cm

13.5 cm

The ordinary match box and the giant "picnic" size match box, shown above, are mathematically similar. If the volume of the smaller box is $15 \cdot 2 \mathrm{~cm}^{3}$ calculate the volume of the larger box.
11. While rummaging in his attic a man finds a triangular sheet of stiff cardboard. The sheet has dimensions as shown in diagram 1.
diagram 1

He decides to make a kite for his son out of the cardboard by making a cut at right angles somewhere along the line AC as shown in diagram 2.

(a) Write down the length of AX.
(b) By considering two similar triangles, or otherwise, show that the exact length of the cut XY is 45 cm .
12. Find the equation of the straight line shown opposite in terms of T and x.

13.

The outline of a buoy consists of an equilateral triangle of side 120 cm with a semi-circular base as shown opposite. $A M$ is an axis of symmetry.
(a) State the radius of the base and show that the vertical height, h, is equal to 164 cm when rounded to the nearest whole number.
(b) Taking s as the length of $A C$, write down expressions for the lengths of $X C$ and $X M$ in terms of s.
(c) Hence or otherwise show that $h=1.37 s$.

Because of a hill, there is no direct road from a motorist's village, V, to his local main town, T.
He must travel 700 metres to a roundabout at R and then make a 120° turn for a further 1,050 metres to get to T.
It is proposed that a tunnel is driven through the hill, in order to create a direct route from V to T.

How long will this direct route be ?
17. Solve the equation $2+3 \cos x^{\circ}=0$, where $0 \leq x<360$.
18. The sum of consecutive squares of ODD numbers can be found using the following number pattern :

SQUARES	PATTERN 1^{2}				$=$	$=$	SUM
$1^{2}+3^{2}$	$=$	$=$	1				
$1^{2}+3^{2}+5^{2}$	$=$	$\frac{2 \times 3 \times 5}{3}$					
$1^{2}+3^{2}+5^{2}+7^{2}$	$=$	$\frac{4 \times 7 \times 7}{3}$	$=$				
3							

(a) Write down a similar expression for the sum of odd squares up to 13 .
(b) By examining the connection between the first 2 numbers of the numerator (top line) of the fractions under PATTERN, or otherwise, write down an expression for S, the sum of the first n odd squares, in terms of n.

Credit Mathematics - Practice Exam B

Marking Scheme

1. For $-5 x=15$
.......... (2)
$x=-3$
.......... (1)
[3 marks KU]
2. For using $\frac{135}{360}$ \qquad
For correct subst.
.......... (1)
For answer $A=75.36 \mathrm{~m}^{2}$
[3 marks KU]
(Accept all correct roundings)
3. For A (large) $\Delta=216 \mathrm{~mm}^{2}$

For $\frac{1}{4} A$ (large) $\Delta=54 \mathrm{~mm}^{2}$
For $\quad \frac{1}{2} \times w \times 18=54$
For $\quad w=6 \mathrm{~mm}$
(1)
[4 marks RA]
4.

For 12% of $200 \mathrm{mg}=24 \mathrm{mg}$ (or 0.88 as a multiplier)
For Compound use of 12%
For <125 by the end of 4 hours (between 3 and 4)
For answer between 4 pm and 5 pm
.......... (1)
[4 marks KU]
5.
(a) $\quad \begin{array}{ll}\text { For } & 4^{2}=1 \cdot 2^{2}+d^{2} \\ \text { For } & d=3 \cdot 8 m\end{array}$
.......... (1)
For $\quad d=3 \cdot 8 m$
[2 marks KU]
(b) For $6 \cdot 1^{2}=1 \cdot 2^{2}+d^{2}$

For $\quad d=5.98 m$
For consistent conclusion (1)
6.
a) For $2 a+63+b=180$ (or equiv) \qquad
For $2 a+b=117$
[2 marks RA]
b) For $2 b+a+72=180$

For $\quad 2 b+a=108$
For knowing to use Sim Eqns
$\begin{array}{ll}\text { For } & a=42 \\ \text { For } & b=33\end{array}$
For $\quad b=33$
7. For methodical approach

For $f(1 \cdot 5)<$ root $<f(1 \cdot 6)$
For root $=1.5$ to 1 d.p.
8. (a) For each factor ... (1 mark)
i.e. $(2 p-1)(p-4)$.......... (2)
(b) For correct denom. i.e. $x(x-1)$

For correct num. i.e. $3 x-2(x-1)$
For answer $\frac{x+2}{x(x-1)}$
[3 marks KU]
(Expansion of brackets is O.K. but 1 off for further cancelling)
(c) For $\left(5.91 \times 10^{9}\right) \div\left(3 \times 10^{5}\right)$, stated or implied \qquad
For 1.97×10^{4} or 19700 seconds
For answer $=5.5$ hours
9. \quad For eliminating z e.g. $y x^{2}=z$

For $x=y\left(y x^{2}\right)$
For $1=y^{2} x$
For $\frac{1}{y^{2}}=x$
[4 marks RA]
10.

For S.F. $=2.5$
For Vol SF $=2 \cdot 5^{3}=15 \cdot 625$
For $\quad V=15.625 \times 15.2$
For $\quad V=237.5 \mathrm{~cm}^{3}$
11. (a) For $A X=90 \mathrm{~cm}$
[1 mark RA]
(b) There are a number of solutions. However, almost
all will depend on finding $A C=150$
For $A C=150$ (by Pyth.)
Possible Solution (Similar Δ 's)
For use of similar triangles (stated/implied)
For $\frac{X Y}{90}=\frac{60}{120}$
For ans. $x=45 \mathrm{~cm}$
[5 marks RA]

N.B. Last mark unavailable if previous error has occured.

For solutions involving the use of trig functions which
lead to an approximate, but inexact, value of $X Y=45 \mathrm{~cm}$, give $3 / 5$ for part (b)
12. For $m=\frac{4-0}{0-3}$ (stated or implied)

For $m=-\frac{4}{3} \quad$ (accept -1.33 but not 1.3) (1)
For $C=4$
For $\quad T=-\frac{4}{3} x+4 \quad$ (accept $y=\ldots$) (1)
13.
(a) $\begin{aligned} \text { For } r & =60 \mathrm{~cm} \\ \text { For } A X & =104 \mathrm{~cm}\end{aligned}$
(1)
For $h=164 \mathrm{~cm}$
(1)
[4 marks RA]
(b) For $X C=X M=\frac{1}{2} s$
[1 mark RA]
(c) For $A X^{2}=s^{2}-\left(\frac{1}{2} s\right)^{2}$
For $A X=0.87 s$ (or equivalent)
For $\quad h=1.37 s$
14. (a) For Area $($ side $\Delta)=1 / 2 \times 1.36 \times 0.45=0.306 \mathrm{~m}^{2}$

For $2 \times$ area of triangle $\quad=0.612 \mathrm{~m}^{2}$
.......... (1)
For area of rectangle $\quad=2.72 \mathrm{~m}^{2}$
......... (1)
For total area $=3.332 \mathrm{~m}^{2} \quad$ (accept approx. $)$
(1) [4 marks KU]
(b) For $\mathrm{V}=$ area x length (stated or implied) $=3.332 \times 2 \cdot 15$
(1)
$=7 \cdot 1638 \mathrm{~m}^{3} \quad$ (or a rounded off figure)
(1) [2 marks KU]
15. For $\angle M N W=131^{\circ}$ and $\angle M W N=18^{\circ}$ (stated or implied)

For $\frac{6}{\sin 18}=\frac{N W}{\sin 31}\left(\right.$ or $\left.\frac{M W}{\sin 131}\right)$
For $N W=10 \cdot 0 \quad$ (or $M W=14 \cdot 7$)
For $O W=10 \times \cos 41^{\circ}\left(\right.$ or $\left.14.7 \times \cos 59^{\circ}\right)$
For $O W=7.5 \mathrm{~m}$
N.B. Do not penalize approximations which, when carried
through, may lead to - e.g. $O W=7.6 \mathrm{~m}$
16. For $V T^{2}=700^{2}+1050^{2}-\left(2 \times 700 \times 1050 \cos 120^{\circ}\right)$

For $=$...................... - (-735000) (1)
For $=2327500$
For $\quad V T=1525.6 \mathrm{~m} \quad$ (or reasonable approximation) \qquad
17.

$$
\begin{array}{rlrl}
\text { For } & & \cos x & =-\frac{2}{3} \\
\text { For } & x & =131 \cdot 8^{\circ} \\
\text { For } & x & =228 \cdot 2^{\circ} \tag{1}
\end{array}
$$

18 (a) For $1^{2}+3^{2}+5^{2}+7^{2}+9^{2}+11^{2}+13^{2}=\frac{7 \times 13 \times 15}{3}$
(b) $\quad S=\frac{n \times(2 n-1) \times(2 n+1)}{3}$
N.B. Do not penalise bad form-e.g. 2n-1+2 for $2 \mathrm{n}+1$, only 1 mark off for lack of brackets.
[5 marks RA]

	KU
Totals	RA
	44

