Credit Mathematics - Practice Examination A

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

1. Answer as many questions as you can.
2. Full credit will be given only where the solution contains appropriate working.
3. You may use a calculator

FORMULAE LIST

The roots of $a x^{2}+b x+c=0 \quad$ are $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule: $\quad a=b^{2}+c^{2}-2 b c \cos A \quad$ or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: Area $=\frac{1}{2} a b \sin C$

1. Solve the following inequality

$$
3 x-5 \leq 5 x+19
$$

2. A bus has a single large windscreen wiper as shown below.

The radius $\mathrm{OA}=\quad$ ' radius $\mathrm{OC}=20 \mathrm{r}^{\prime}$

If the wiper rotates throug.
about O , calculate the area of window cleaned during this sweep.
3. The radius of the earth is 4.8×10^{6} metres.

Calculate the surface area of the earth, assuming that the earth is a sphere.
Give your answer in scientific notation and in units of square kilometres .
$\left[\right.$ Surface area of a sphere $\left.=4 \pi r^{2}\right]$
4. A rectangular sheet of paper measures 30 cm by 20 cm .

A cut is made at an angle of x°, as shown, and the triangular piece is removed.

The area of the triangular piece is found to be exactly 20% of the area of the whole sheet.

Find the size of angle x° giving your answer correct to the nearest degree.

5. A function $f(x)$ is given by $f(x)=2 x+3$
(a) Find the value of i) $\quad f(5)$
ii) $\quad f(10)$
(b) Show that for any value of $t, \quad f(2 t)=2 f(t)-3$
8. The time, T minutes, to whitewash a square wall varies directly as the square of the side of the wall, W metres, and inversely as the breadth, b centimetres, of the whitewash brush.
(a) The painter takes 40 minutes to whitewash a certain wall. How long would it have taken him if his brush had been twice as broad as the one he actually used?
(b) The next wall to be painted has a side which is 50% broader than the first wall.
Using his original (smaller) brush, how long should it take him to whitewash this second wall?
9. A toy manufacturer makes a range of small castles for children .

The basic turret is conical in shape. It is made by folding a quarter - circle of flexible plastic sheeting into a cone, as shown in the diagram below .

(a) Find x, the arc length of the quarter - circle .

Give your answer in centimetres, correct to one decimal place.
(b) The arc length , x centimetres, becomes the circumference of the base of the cone. Find r, the radius of this base circle in centimetres .
(c) Calculate the volume of this cone in cubic centimetres.

Volume of a cone $=\frac{1}{3} \pi r^{2} h$
10. The magnetic force, F , of a particle in a magnetic field is given by the formula

$$
F=\frac{m v^{2}}{r} .
$$

Make v the subject of the formula.
11. A ship sails from port P and sails due east to an oil rig Q, 75km away. After delivering its cargo, it sails on a bearing of 120° for 60 km until it reaches its destination, port R.

(a) Write down the size of angle $P Q R$.
(b) Calculate the distance between the ports P and R.

Do not use a scale drawing
12. The sequence known as triangular numbers begins as follows : $1,3,6,10, \ldots \ldots$. They can be represented in diagram form as shown below

(a) How many dots will there be in T_{6} ?
(b) The formula for the number of dots, D, in the $n^{\text {th }}$ triangular number is given by the formula

$$
D=\frac{1}{2} n^{2}+\frac{1}{2} n .
$$

78 dots are required for a certain triangular number T_{n}. Calculate n.
13. Solve algebraically the equation

$$
7 \cos x^{\circ}+5=0 \quad, \quad \text { for } 0 \leq x<360 .
$$

14. A 3-digit number, $p q r$, has the value $100 p+10 q+r$.

For example $563=(100 \times 5)+(10 \times 6)+3$.
(a) Write down the value of $r q p$.
(b) Consider the following subtractions which involve a number and its 'reverse'.

$$
\begin{aligned}
& 321-123=198 \\
& 432-234=198 \\
& 543-345=198
\end{aligned}
$$

Show that, if you start with any three digit number in the form $p q r$, where $q=r+1$ and $p=r+2$, then when you subtract its 'reverse' number from it, the answer is always 198 .
15. A small ' sampler ' tin of Ludux paint is similar in shape to the larger $2 \cdot 5$ litre tin.

If the diameters of the sampler and the larger tin are 4 cm and 16 cm respectively, how many millilitres will the sampler tin contain?
16. All straight lines are in the form $y=m x+c$, where m and c are numbers. Consider the diagram below

(a) Given that the coordinates of A and B are $(-5,-35)$ and $(2,7)$ respectively, form a system of equations and then solve it to find the values of m and c.
(b) Hence, or otherwise, write down the coordinates of the point P .
17. The graph of $y=x^{3}-4 x^{2}+x+1$ has a root between 3 and 4 .

Use iteration to find this root correct to one decimal place. Show clearly all your working.

KU	RA

Consider the diagram below for any point $\mathrm{A}(x, y)$ in the first quadrant.

(b) Show that, if (x, y) is any point on the circumference of the circle, centre O and radius r, then the area (A) of the triangle $O A B$ is given by the formula

$$
A=\frac{1}{2} y \sqrt{x^{2}+y^{2}} .
$$

1. For $\begin{aligned} & -24 \leq 2 x \\ & \\ & x \geq-12 \quad \text { (or equiv.) }\end{aligned}$

$$
\begin{equation*}
x \geq-12 \quad \text { (or equiv.) } \tag{1}
\end{equation*}
$$

.......... (2)
[3 marks KU]
2. For using $\frac{115}{360}$
..........

For $\quad A_{\text {larger sector }}=9052.6$ sq. cm
For $\quad A_{\text {small sector }}=401.2$ sq. cm
For shaded area $=9052 \cdot 6-401 \cdot 2=8651 \cdot 4$ sq. cm
(N.B. i) Ignore rounding errors ii) For consistent use of $C=2 \pi r$, instead
of $A=\pi r^{2}, 3 / 4$ marks)
[4 marks KU]
3. For radius $=4.8 \times 10^{3} \mathrm{~km}$
$S . A .=289.4 \times 10^{6}$
$=2.894 \times 10^{8}$ sq. $\mathrm{km} \quad \ldots \ldots \ldots . . \quad$ (1)
[3 marks KU]
4. For Rect. Area $=600$ sq. cm and Tria. Area $=120$ sq. cm \qquad
For Area $_{\Delta}=1 / 2 \times 20 \times h=120$
For $\quad h=12$
For $\quad \operatorname{Tan} x=\frac{12}{20}$
For answer $x=31^{\circ} \quad\left(\right.$ accept $\left.30 \cdot 9^{\circ}\right)$
(1) [5 marks RA]
5.
(a)
i) $f(5)=13$
ii) $f(10)=23$
(2)
(b) For $f(2 t)=2(2 t)+3=4 t+3$
For $2 f(t)-3=2(2 t+3)-3$

$$
\begin{equation*}
=4 t+3 \tag{1}
\end{equation*}
$$

[2 marks KU]
(Other proofs of course are acceptable, however, no marks for a series of examples i.e. $f(1)$ and $f(2)$ considered, then $f(2)$ and $f(4)$ etc.)
[3 marks $R A$]
6. (a) For $a=3, b=4$ and $c=-5$

For $\quad x=\frac{-4 \pm \sqrt{4^{2}-(4 \times 3 \times-5)}}{6}$
For correct square root number i.e. $\sqrt{76}$
For calculation to $\quad x=0 \cdot 78 \ldots$. or $-2 \cdot 11 \ldots$. .
For rounding $\quad x=0.8$ or $-2 \cdot 1$
(b) i) For $(2 x+1)(x-4)$
ii) For $\frac{(2 x+1)(x-4)}{2(2 x+1)}$

$$
\begin{equation*}
\text { For cancelling to } \quad \frac{x-4}{2} \tag{1}
\end{equation*}
$$

(1) [$\mathbf{8}$ marks KU]
7. (a) Maximum occurs at $x=0$ (stated or implied)

For @ $x=0$ then $y=98$ feet
(b) At $A, y=0 \quad \therefore 0=98-2 x^{2}$

For $x^{2}=49$
$x=7$
(if a is calculated then given as $(7,0)$, full marks)
8. (a) Knowing what inverse means

Applying and then answer 20 mins.
\qquad
(N.B. $9 / 2$ for 80 minutes)
(b) Evidence of '1.5' \qquad
Evidence of 1.5^{2} '
.......... (1)
For answer $2 \cdot 25 \times 40=90 \mathrm{mins}$. \qquad
9. (a) For using $90 / 360$ (or equiv.)

For answer $\quad x=15.7 \mathrm{~cm}$
[2 marks KU]
(b) For $2 \pi r=15.7$

$$
\begin{align*}
r & =\frac{15 \cdot 7}{2 \pi} \tag{1}\\
r & =2 \cdot 5 \mathrm{~cm}
\end{align*}
$$

(c) For $s=10 \mathrm{~cm}$ (stated or implied) \qquad
For pyth. $\quad 10^{2}=r^{2}+h^{2}$
For $\quad h=9.7$ (or 9.68 etc.)
For $\quad V=1 / 3 \times \pi \times 2 \cdot 5^{2} \times 9.7$
For answer $\quad V=63 \cdot 5 \mathrm{~cm}^{2}$ \qquad
10. For $F r=m v^{2}$
(1)
$\frac{F r}{m}=v^{2}$

$$
\begin{equation*}
\sqrt{\frac{F r}{m}}=v \tag{1}
\end{equation*}
$$

\qquad
11. (a) For $\angle P Q R=150^{\circ}$
(N.B. Pupils may still achieve full marks for part (b) even if $\angle P Q R$ is wrongly stated)
(b) For use of the cosine rule

For correct sub. $\quad P R^{2}=75^{2}+60^{2}-\left(2 \times 75 \times 60 \times \cos 150^{\circ}\right)$
For bracket (7794.2)
For $\quad P R^{2}=17019 \cdot 2$
For $\quad P R=130.5 \mathrm{~km}$
(N.B. i) Ignore rounding errors.
ii) Use of pythagoras' $9 / 5$
iii) Use of $\sin 150$, instead of $\cos 150$, correctly followed through $3 / 5$ marks.
12.
(a) For 21 dots
(1)
(b) For $78=\frac{1}{2} n^{2}+\frac{1}{2} n$
For $n^{2}+n-156=0$
(1)
For $n=12$
(1)
(N.B. answer of $\mathrm{n}=12$ without working ... $1 / 3$ marks)
[4 marks $R A$]
13. For

$$
\begin{align*}
\cos x^{\circ} & =\frac{-5}{7} \\
\text { or } \quad x & =135 \cdot 6^{\circ} \\
x & =224 \cdot 4^{\circ} \tag{1}
\end{align*}
$$

[3 marks KU]
14. (a) For $r q p=100 r+10 q+p$
(b) For $p q r-r p q=100 p+10 q+r-(100 r+10 q+p)$

$$
\begin{align*}
& =99 p-99 r \quad(\text { eventually }) \tag{1}\\
& =99(r+2)-99 r
\end{align*}
$$

For answer $=198$
(1) [5 marks RA]
15. For Scale factor $=\frac{1}{4}$ (or 4 used correctly)

For S.F. ${ }^{3}=\frac{1}{64}$ (or 64 used correctly)
For 1 litre $=1000 \mathrm{ml}$ (stated or implied)
For answer 39 ml
(N.B. i) 39.06 or other approx. full marks
ii) S.F. ${ }^{2}$ with answer $\approx 156 \mathrm{ml}$..... 3 marks)
16. (a) For strategy i.e. knowing to sub. into $y=m x+c$

For $-35=-5 m+c$ (or equiv.)
$7=2 m+c \quad$ (or equiv.)
Solving systemthen $\mathrm{m}=6$
(1)
and $\mathrm{c}=-5$
(1) [5 marks RA]
(b) For answer $\mathrm{P}(0,-5)$
(1) [$\mathbf{1}$ mark KU]
17. For correct strategy (i.e. checking $f(3 \cdot 1), f(3 \cdot 2)$, etc.)

For deducing that root lies between 3.6 and 3.7
For establishing correct value of $3 \cdot 7$
(1) [$\mathbf{3}$ marks KU]
18. (a) For $r^{2}=(\sqrt{3})^{2}+1^{2}$

For $\quad r=2$
For $\quad r=O B$ (stated or implied)
Then Area $=1 / 2 \times 2 \times 1=1$
Answers/solutions involving trig. should be checked for exactness.
Approx. solutions i.e. $\mathrm{r}=1.966 \ldots$... means 1 mark off.
(b) For $O B=r=\sqrt{x^{2}+y^{2}}$

For using y as y-coordinate at A
Then Area $=1 / 2 \times O B \times A T$

$$
\begin{equation*}
=1 / 2 y \sqrt{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

[7 marks $R A$]

Totals

K U	R A
47	42

