Credit Mathematics - Practice Examination A

Please note ... the format of this practice examination is different from the current format. The paper timings are different and calculators can be used throughout.

MATHEMATICS Standard Grade - Credit Level

Time allowed - 2 hours 15 minutes

Read Carefully

- 1. Answer as many questions as you can.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. You may use a calculator

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule: $a = b^2 + c^2 - 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$

1. Solve the following inequality

$$3x - 5 \leq 5x + 19$$

2. A bus has a single large windscreen wiper as shown below.

The radius OA = 100 'radius OC = 200'

If the wiper rotates through about O, calculate the area of window cleaned during this sweep.

3. The radius of the earth is $4 \cdot 8 \times 10^6$ metres.

Calculate the surface area of the earth, assuming that the earth is a sphere.

Give your answer in scientific notation and in units of square kilometres.

 $\left[Surface area of a sphere = 4\pi r^2 \right]$

4. A rectangular sheet of paper measures 30cm by 20cm. A cut is made at an angle of x° , as shown, and the triangular piece is removed.

The area of the triangular piece is found to be exactly 20% of the area of the whole sheet.

Find the size of angle x° giving your answer correct to the nearest degree.

4

3

KU RA

- 5. A function f(x) is given by f(x) = 2x + 3
 - (a) Find the value of i) f(5) ii) f(10).
 - (b) Show that for any value of t, f(2t) = 2 f(t) 3

6. (a) Solve the quadratic equation $3x^2 + 4x - 5 = 0$, giving your answer correct to one decimal place.

(b) *i*) Factorise $2x^2 - 7x - 4$.

ii) Hence, simplify
$$\frac{2x^2 - 7x - 4}{4x + 2}$$

7. A boy kicks a stone off a cliff. The path of the stone as it falls is part of a parabola whose equation is $y = 98 - 2x^2$.

- (a) Given that the boy is standing at the maximum turning point of the parabola, find the height of the cliff.
- (b) The stone lands at the point A. By establishing the coordinates of A, or otherwise, calculate how far out from the bottom of the cliff the stone lands.

5

1

2

KU

2

RA

KU RA A ship sails from port P and sails due east to an oil rig Q, 75km away. 11. After delivering its cargo, it sails on a bearing of 120° for 60km until it reaches its destination, port R. Ν 75km Q 60km R *(a)* Write down the size of angle PQR. 1 *(b)* Calculate the distance between the ports P and R. Do not use a scale drawing 5 The sequence known as triangular numbers begins as follows : $1, 3, 6, 10, \dots$. 12. They can be represented in diagram form as shown below • T_1 T_3 T_4 T_2 How many dots will there be in T_6 ? 1 *(a)* The formula for the number of dots, D, in the n^{th} triangular number *(b)* is given by the formula $D = \frac{1}{2}n^2 + \frac{1}{2}n$. 78 dots are required for a certain triangular number T_n . Calculate n. 3 Solve algebraically the equation 13. $7\cos x^{\circ} + 5 = 0$, for $0 \le x < 360$. 3

14. A 3 - digit number, pqr, has the value 100p + 10q + r.

For example $563 = (100 \times 5) + (10 \times 6) + 3$.

- (a) Write down the value of rqp.
- (b) Consider the following subtractions which involve a number and its 'reverse'.

321	—	123	=	198
432	—	234	=	198
543	—	345	=	198

Show that, if you start with any three digit number in the form pqr, where q = r+1 and p = r+2, then when you subtract its 'reverse' number from it, the answer is always 198.

15. A small 'sampler' tin of Ludux paint is similar in shape to the larger $2 \cdot 5$ litre tin.

If the diameters of the sampler and the larger tin are 4cm and 16cm respectively, how many **millilitres** will the sampler tin contain ?

16. All straight lines are in the form y = mx + c, where m and c are numbers. Consider the diagram below

- (a) Given that the coordinates of A and B are (-5,-35) and (2,7) respectively, form a system of equations and then solve it to find the values of m and c.
- (b) Hence, or otherwise, write down the coordinates of the point P.

4

KU

RA

1

4

1

17. The graph of $y = x^3 - 4x^2 + x + 1$ has a root between 3 and 4.

Use iteration to find this root correct to one decimal place. Show clearly all your working.

18. The point A ($\sqrt{3}$, 1) lies on a circle centre the origin and radius r as shown in the diagram below.

(a) Show that r = 2 and hence that the area of triangle *OAB* is 1 square unit. Consider the diagram below for any point A (x, y) in the first quadrant.

(b) Show that, if (x, y) is any point on the circumference of the circle, centre O and radius r, then the area (A) of the triangle OAB is given by the formula

7

$$4 = \frac{1}{2}y \sqrt{x^2 + y^2} \; \; .$$

3

KU

RA

Credit Mathematics - Practice Exam A

Marking Scheme

1.	For	$-24 \le 2x$ (2) $x \ge -12$ (or equiv.) (1)	[3 marks KU]
2.	For usi	ng $\frac{115}{$	
	For	360 () 4 = 9052.6 sq. cm (1)	
	For	$A_{\text{larger sector}} = 401.2 \text{ sq. cm} \tag{1}$	
	For sha	$\frac{1}{10000000000000000000000000000000000$	
	(N.B.	i) Ignore rounding errors ii) For consistent use of $C = 2\pi r$, instead of $A = \pi r^2$ 3/ marks)	[1 marks KII]
		(1 A - M), 74 marks)	
3.	For	$radius = 4 \cdot 8 \times 10^3 \ km \qquad \dots \qquad (1)$	
		$S.A. = 289 \cdot 4 \times 10^6$ (1)	
		$= 2 \cdot 894 \times 10^8 \ sq. \ km$ (1)	[3 marks KU]
4	For	Rect Area = 600 sq cm and Tria Area = 120 sq cm (1)	
	For	$Area_{\Delta} = \frac{1}{2} \times 20 \times h = 120 \qquad \qquad$	
	For	h = 12 (1)	
	For	$Tan x = \frac{12}{20}$ (1)	
	For ans	wer $x = 31^{\circ}$ (accept $30 \cdot 9^{\circ}$)(1)	[5 marks RA]
5.	(a)	i) $f(5) = 13$ ii) $f(10) = 23$ (2)	[2 marks KU]
	(b)	For $f(2t) = 2(2t) + 3 = 4t + 3$ (1)	
		For $2f(t) - 3 = 2(2t+3) - 3$ (1)	
		= 4t + 3 (1)	
	(Other series	proofs of course are acceptable, however, no marks for a of examples i.e. $f(1)$ and $f(2)$ considered, then $f(2)$ and $f(4)$ etc.)	[3 marks RA]
6.	(a)	For $a = 3$, $b = 4$ and $c = -5$ (1)	
		For $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 3 \times -5)}}{6}$ (1)	
		For correct square root number i.e. $\sqrt{76}$	
		For calculation to $x = 0.78$ or -2.11 (1)	
		For rounding $x = 0.8 \text{ or } -2.1$ (1)	
	(b)	i) For $(2x+1)(x-4)$ (1)	
		ii) For $\frac{(2x+1)(x-4)}{2(2x+1)}$ (1)	
		For cancelling to $\frac{x-4}{2}$ (1)	[8 marks KU]

7.	(a)	Maximum occurs at $x = 0$ (stated or implied) For (a) $x = 0$ then $y = 98$ feet		(1) (1)	
	(b)	At A, $y = 0$: $0 = 98 - 2x^2$ For $x^2 = 49$ x = 7		 (1) (1) (1) 	
		(if a is calculated then given as (7,0), full marks)			[5 marks RA]
8.	(a)	Knowing what <i>inverse</i> means Applying and then answer 20 mins	. (1)	(1)	
	(b)	Evidence of 1.5 Evidence of 1.5^2 For answer $2.25 \times 40 = 90$ mins	(1) (1) (1)		[5 marks KU]
9.	(a)	For using $\frac{90}{360}$ (or equiv.) For answer $x = 15.7$ cm		(1) (1)	[2 marks KU]
	(b)	For $2\pi r = 15 \cdot 7$ $r = \frac{15 \cdot 7}{2\pi}$ $r = 2 \cdot 5$ cm		 (1) (1) (1) 	
	(c)	For $s = 10$ cm (stated or implied) For pyth. $10^2 = r^2 + h^2$ For $h = 9 \cdot 7$ (or $9 \cdot 68$ etc.) For $V = \frac{1}{3} \times \pi \times 2 \cdot 5^2 \times 9 \cdot 7$ For answer $V = 63 \cdot 5$ cm ²	······	 (1) (1) (1) (1) (1) 	[8 marks RA]
10.	For	$Fr = mv^2 \qquad \dots \qquad (1)$ $\frac{Fr}{r} = v^2 \qquad \dots \qquad (1)$			

 $\frac{-m}{m} = v \qquad (1)$ $\sqrt{\frac{Fr}{m}} = v \qquad (1) \qquad [3 \text{ marks KU}]$

11.	(a)	For $\angle PQR = 150^{\circ}$ (1) (N.B. Pupils may still achieve full marks for part (b) even if $\angle PQR$ is wrongly stated)	
	(b)	For use of the cosine rule	[5 marks KU]
12.	(a) (b)	For 21 dots (1) For $78 = \frac{1}{2}n^2 + \frac{1}{2}n$ (1) For $n^2 + n - 156 = 0$ (1) For $n = 12$ (1) (N.B. answer of $n = 12$ without working $\frac{1}{3}$ marks)	[4 marks RA]
13.	For	$\cos x^{\circ} = \frac{-5}{7}$ (1) $x = 135 \cdot 6^{\circ}$ (1) or $x = 224 \cdot 4^{\circ}$ (1)	[3 marks KU]
14.	(a) (b)	For $rq p = 100r + 10q + p$ (1) For $pqr - rpq = 100p + 10q + r - (100r + 10q + p)$ (1) = 99p - 99r (eventually) (1) = 99(r+2) - 99r (1) For answer $= 198$ (1)	[5 marks RA]
15.	For For For ar (N.B	Scale factor = $\frac{1}{4}$ (or 4 used correctly)	[4 marks KU]

16.	(a)	For strategy i.e. knowing to sub. into $y = mx + c$	 (1)	
		For $-35 = -5m + c$ (or equiv.)	 (1)	
		7 = 2m + c (or equiv.)	 (1)	
		Solving systemthen $m = 6$	 (1)	
		and $c = -5$	 (1)	[5 marks RA]
	(b)	For answer $P(0, -5)$	 (1)	[1 mark KU]

17.	For correct strategy (i.e. checking $f(3 \cdot 1)$, $f(3 \cdot 2)$, etc.)	 (1)	
	For deducing that root lies between $3 \cdot 6$ and $3 \cdot 7$	 (1)	
	For establishing correct value of $3 \cdot 7$	 (1)	[3 marks KU]

(a)	For	$r^2 = (\sqrt{3})^2 + 1^2$	 (1)
	For	r = 2	 (1)
	For	r = OB (stated or implied)	 (1)
	Then	Area = $\frac{1}{2} \times 2 \times 1 = 1$	 (1)

18.

Answers/solutions involving trig. should be checked for <u>exactness</u>. Approx. solutions i.e. r = 1.966... means 1 mark off.

(b) For $OB = r = \sqrt{x^2 + y^2}$	(1)	
For using y as y-coordinate at A Then Area = $1/x OB \times 4T$	(1)	
$= \frac{1}{2}y\sqrt{x^2 + y^2}$	(1)	[7 marks RA]

	K U	R A
Totals	47	42