2011 Mathematics

Intermediate 1 Units 1, 2 \& 3 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 1 Units $1,2 \& 3$ Paper 1

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from the Principal Assessor. You can do this by posting a question on the Marking Team forum. Alternatively, you can refer the issue directly to the Principal Assessor by completing a Principal Assessor Referral form and returning it with the script in the normal way.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and x are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$ ', indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Two: Mathematics Intermediate 1: Paper 1, Units 1, 2 and 3

	sti	Expected Answer/s	Max Mark	Additional Guidance
1	a	Ans: 20.37 - ${ }^{1} \quad$ calculate $6.47+13.9: \quad 20 \cdot 37$	1	
1	b	Ans: 225 - ${ }^{1} \quad$ calculate $5 / 8$ of $360: 225$	1	
1	c	Ans: 156 - ${ }^{1}$ calculate $12 \times 13: 156$	1	
2		Ans: $\mathbf{1 3}$ hours $\mathbf{3 5}$ minutes - ${ }^{1}$ calculate time from 1745 to 0720 : 13 hours 35 minutes	1	1. Accept 13.35
3		Ans: 25 - ${ }^{1}$ know to multiply $4 \times(-2)$ then subtract answer from 17: eg $17-(-8), 17+8$ $\bullet^{2} \quad$ carry out integer multiplication and subtraction correctly: 25	2	1. Some common answers (no working necessary) (a) 25 award $2 / 2$ (b) $-26[13 \times(-2)]$ award $1 / 2$ (c) 8 or -8 award $0 / 2$ 2. Some common answers (working must be shown) (a) $17-8=9$ or $17-8 \quad$ award $1 / 2$ (b) $-8-17=-25 \quad[4 \times(-2)-17]$ award $1 / 2$ (c) $8-17=-9$ $[4 \times(-2)-17]$ award $0 / 2$ (d) $17-6=11$ award $0 / 2$ (e) $17+6=23$ award $0 / 2$

	sti	Expected Answer/s	Max Mark	Additional Guidance
4	a	Ans: (-7,2) and (5,-6) plotted correctly - ${ }^{1}(-7,2)$ and $(5,-6)$ plotted correctly:	1	1. Points need not be labelled
4	b	Ans: (-1,-2) - ${ }^{1}$ state coordinates of midpoint of $\text { PQ: } \quad(-1,-2)$	1	1. Line PQ need not be drawn 2. Accept $-1,-2$ without brackets or (-1), (-2) 3. Where $(2,-7)$ and $(-6,5)$ are plotted in (a) then accept either $(-2,-1)$ or $(-1,-2)$ in (b)

	stio	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
5	a	Ans: £4 - ${ }^{1}$ know how to find cost of additional distance: $2 \times 50(\mathrm{p})$ - ${ }^{2} \quad$ correctly add $£ 3$ to above: $(£) 3+2 \times 50(\mathrm{p})=(£) 4$	2	1. (£) 4 without working award $2 / 2$ 2. Some common answers (working must be shown) (a) $3 \times(\mathfrak{f}) 3+2 \times 50(\mathrm{p})=(\mathfrak{f}) 10$ award $1 / 2$ (b) $(\mathfrak{f}) 3+3 \times 50(\mathrm{p})=(\mathfrak{f}) 4 \cdot 50$ award $1 / 2$ (c) $3 \times(\mathfrak{f}) 3+3 \times 50(\mathrm{p})=(\mathfrak{f}) 10 \cdot 50$ award $0 / 2$ (d) $\quad(£) 3+50(\mathrm{p})=(£) 3 \cdot 50$ award 0/2
5	b	Ans: 4500m - ${ }^{1}$ know to split $£ 7$ into $£ 3+8 \times 50$ p - $^{2} \quad$ calculate distance: $500+8 \times 500=4500$	2	1. 4500 without working award $2 / 2$ (irrespective of answer to (a)) 2. Award $1 / 2$ for these common answers (working must be shown) (a) If candidate uses 50 p per 500 m , then allow one 500 less or one 500 extra (i) $8 \times 500=4000$ (ii) $500+7 \times 500=4000$ (iii) $500+9 \times 500=5000$ (b) If candidate uses $£ 1$ per 1000 m , then allow one 1000 less or one 1000 extra (i) $4 \times 1000=4000$ (ii) $500+3 \times 1000=3500$ (iii) $500+5 \times 1000=5500$ (c) If candidate uses $£ 1$ per 500 m , then $£ 3+4 \times £ 1$ must be used $500+4 \times 500=2500$ 3. Where incorrect method is used in part (a), then allow follow through in part (b) (i) $($ a) $=£ 4 \cdot 50$ (b) $=4000$ award $2 / 2$ for (b) (ii) $($ a $)=£ 10 \cdot 50$ (b) $=1000 \quad$ award $1 / 2$ for (b) (iii) $($ a) $=£ 10$ (b) $=1071$ award $2 / 2$ for (b), (b) $=1000+500 \div 7$ award $1 / 2$ for (b) (b) $=1000$ award $0 / 2$ for (b)

	stio	Expected Answer/s	Max Mark	Additional Guidance
8	a	Ans: 15 minutes -1 find mode: 15	1	1. For an answer of 15 (a) without working, award $1 / 1$ (b) with evidence of an incorrect method, award 0/1 eg $5,10,15,20,25$ [median] $75 \div 5=15$ ["mean"]
8	b	Ans: $\quad 7 / 30$ - ${ }^{1}$ find probability: ${ }^{7 / 30}$	1	1. Accept 7:30, 7 out of 30,7 in $30,7-30$, $0 \cdot 23(3 . .),. 23(\cdot 3 \ldots) \%$
8	c	Ans: 16.5 - ${ }^{1}$ complete table: $\begin{array}{r} 140 \\ 125 \\ \hline 495 \\ \hline \end{array}$ - ${ }^{2} \quad$ know to divide $\Sigma \mathrm{fx}$ by 30 : $495 \div 30$ - ${ }^{3} \quad$ correctly divide $\Sigma \mathrm{fx}$ by 30 : $=16 \cdot 5$	3	1. Award of $1^{\text {st }}$ mark: 140,125 and 495 need not appear in table but must be shown in working 2. $2^{\text {nd }}$ mark may only be awarded for attempting $\sum \mathrm{f} x \div 30$ 3. Answer With evidence Without evidence $\underline{\text { for 1 }{ }^{\text {st }} \text { mark }}$ for ${ }^{\text {st }}$ mark $16 \cdot 5 \quad 3 / 3 \checkmark \checkmark \checkmark \quad 2 / 3 \times \checkmark \checkmark$ $99[495 \div 5] \quad 1 / 3 \checkmark x x \quad 0 / 3$ $495 \div 3 \times 10 \quad 2 / 3 \checkmark \checkmark x \quad 1 / 3 \checkmark x x$ [$=1650$]

Question		Expected Answer/s						Max	Additional Guidance
9		Ans \square ${ }^{1}$ \bullet^{2}	80	55 \checkmark one anot final	50 \checkmark \checkmark ow co er two two r	30 \checkmark \checkmark \checkmark orrec o ro ows	Total 190 185 165 160 135 y S orrectly	3	1. Where there are missing totals a maximum of 2 marks is available (a) 5 rows otherwise "correct" award $2 / 3$ (b) 2 rows otherwise "correct" award $1 / 3$
10	a	Ans	9 or nd h	den n	mber	9		1	1. Answer may appear on hidden card
10	b	Ans \bullet^{1} \bullet^{2}		hat to $\begin{aligned} & \text { den n } \\ & +8+ \end{aligned}$	$\mathrm{al}=\mathrm{n}$	mean + 1)	$\times 6:$ 4	2	1. 4 without working award $2 / 2$ 2. (a) $26 \div 6=4(\cdot \ldots)=4 \quad$ award $0 / 2$ (b) $26 \div 5=5(\ldots)$ then an answer of 4 award $2 / 2$ 3. Alternative strategy: - ${ }^{1}$ two trials where second is better than first: - ${ }^{2}$ find hidden number: 4 4. Answer may appear on hidden card

TOTAL MARKS FOR PAPER 1

[END OF MARKING INSTRUCTIONS]

