X100/12/03

NATIONAL TUESDAY, 6 MAY QUALIFICATIONS 2.50 PM - 4.00 PM 2014 MATHEMATICS HIGHER Paper 2

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:	$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$
	$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

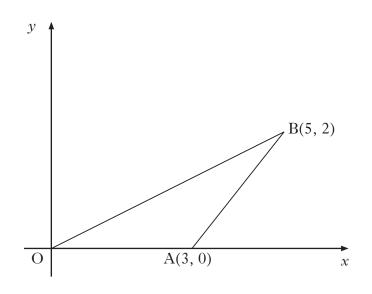
Table of standard derivatives:

f(x)	f'(x)
$\sin ax$ $\cos ax$	$a \cos ax$ - $a \sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

ALL questions should be attempted.


4

2

2

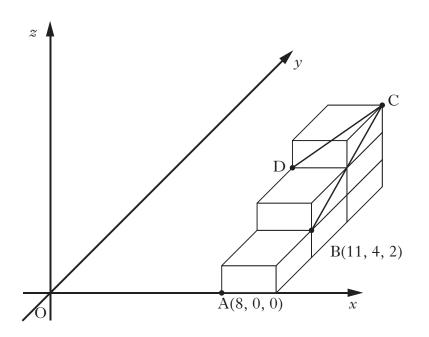
4

1. A(3, 0), B(5, 2) and the origin are the vertices of a triangle as shown in the diagram.

- (a) Obtain the equation of the perpendicular bisector of AB.
- (b) The median from A has equation y + 2x = 6.Find T, the point of intersection of this median and the perpendicular bisector of AB.2
- (c) Calculate the angle that AT makes with the positive direction of the *x*-axis.
- 2. A curve has equation $y = x^4 2x^3 + 5$.

Find the equation of the tangent to this curve at the point where x = 2. 4

3. Functions *f* and *g* are defined on suitable domains by


$$f(x) = x(x-1) + q$$
 and $g(x) = x + 3$.

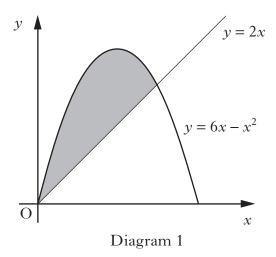
- (a) Find an expression for f(g(x)).
- (b) Hence, find the value of q such that the equation f(g(x)) = 0 has equal roots.

[Turn over

5

4. Six identical cuboids are placed with their edges parallel to the coordinate axes as shown in the diagram.

A and B are the points (8, 0, 0) and (11, 4, 2) respectively.


(<i>a</i>) State the coordinates of C and D.	2
(b) Determine the components of \overrightarrow{CB} and \overrightarrow{CD} .	2
(c) Find the size of the angle BCD.	5

5. Given that
$$\int_{4}^{t} (3x+4)^{-\frac{1}{2}} dx = 2$$
, find the value of *t*.

6. Solve the equation

$$\sin x - 2\cos 2x = 1$$
 for $0 \le x < 2\pi$. 5

- Land enclosed between a path and a railway line is being developed for housing. This land is represented by the shaded area shown in Diagram 1.
 - The path is represented by a parabola with equation $y = 6x x^2$.
 - The railway is represented by a line with equation y = 2x.
 - One square unit in the diagram represents 300 m² of land.

- (a) Calculate the area of land being developed.
- (b) A road is built parallel to the railway line and is a tangent to the path as shown in Diagram 2.

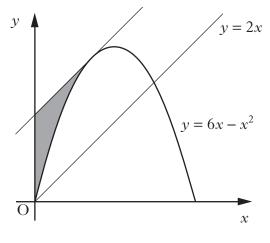


Diagram 2

It is decided that the land, represented by the shaded area in Diagram 2, will become a car park.

Calculate the area of the car park.

5

5

8. Given that the equation

$$x^2 + y^2 - 2px - 4py + 3p + 2 = 0$$

represents a circle, determine the range of values of *p*.

- 9. Acceleration is defined as the rate of change of velocity. An object is travelling in a straight line. The velocity, v m/s, of this object, t seconds after the start of the motion, is given by $v(t) = 8\cos(2t - \frac{\pi}{2})$.
 - (a) Find a formula for a(t), the acceleration of this object, t seconds after the start of the motion.
 - (b) Determine whether the velocity of the object is increasing or decreasing when t = 10.
 - (c) Velocity is defined as the rate of change of displacement.
 Determine a formula for s(t), the displacement of the object, given that s(t) = 4 when t = 0.

[END OF QUESTION PAPER]

3

2

3