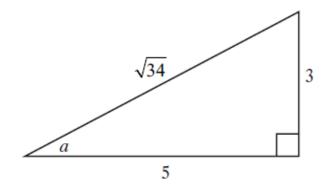

Higher Maths 2014 paper 1

Q1-20 were originally multiple choice questions worth 2 marks each.


- 1. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n + 1$, with $u_2 = 15$. What is the value of u_4 ?
- 2. The diagram shows a circle with centre C(1, 2) and the tangent at T(3, -1).

What is the gradient of this tangent?

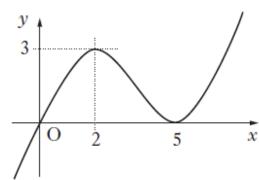
- 3. If $\log_4 12 \log_4 x = \log_4 6$, what is the value of x?
- **4.** If $3\sin x 4\cos x$ is written in the form $k\cos(x-a)$, what are the values of $k\cos a$ and $k\sin a$?
- 5. Find $\int (2x+9)^5 dx$.
- 6. Given that $\mathbf{u} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, find $2\mathbf{u} 3\mathbf{v}$ in component form.

7. A right-angled triangle has sides and angles as shown in the diagram.

What is the value of $\sin 2a$?

8. What is the derivative of $(4-9x^4)^{\frac{1}{2}}$?

9. $\sin x + \sqrt{3} \cos x$ can be written as $2 \cos \left(x - \frac{\pi}{6} \right)$.

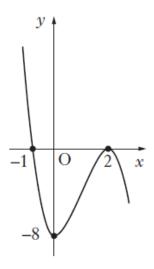

The maximum value of $\sin x + \sqrt{3}\cos x$ is 2.

What is the maximum value of $5\sin 2x + 5\sqrt{3}\cos 2x$?

10. A sequence is defined by the recurrence relation $u_{n+1} = (k-2)u_n + 5$ with $u_0 = 3$.

For what values of k does this sequence have a limit as $n \to \infty$?

11. The diagram shows part of the graph of y = f(x).

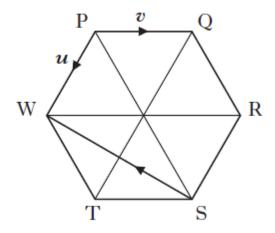


Draw the graph of y = 2f(x) + 1

- 12. A function f, defined on a suitable domain, is given by $f(x) = \frac{6x}{x^2 + 6x 16}$. What restrictions are there on the domain of f?
- 13. What is the value of $\sin\left(\frac{\pi}{3}\right) \cos\left(\frac{5\pi}{4}\right)$
- 14. The vectors $\mathbf{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$ are perpendicular.

What is the value of k?

15. The diagram shows a cubic curve passing through (-1, 0), (2, 0) and (0, -8).



What is the equation of the curve?

- 16. The unit vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a}.\mathbf{b} = \frac{2}{3}$. Determine the value of $\mathbf{a}.(\mathbf{a} + 2\mathbf{b})$.
- 17. $3x^2 + 12x + 17$ is expressed in the form $3(x + p)^2 + q$. What is the value of q?
- 18. What is the value of $1 2\sin^2 15^\circ$?

19. The diagram shows a regular hexagon PQRSTW.

 \overrightarrow{PW} and \overrightarrow{PQ} represent vectors u and v respectively.

What is \overrightarrow{SW} in terms of u and v?

20. Evaluate $2 - \log_5 \frac{1}{25}$.

SECTION B

Marks

6

ALL questions should be attempted.

- 21. A curve has equation $y = 3x^2 x^3$.
 - (a) Find the coordinates of the stationary points on this curve and determine their nature.

(b) State the coordinates of the points where the curve meets the coordinate axes

- (b) State the coordinates of the points where the curve meets the coordinate axes and sketch the curve.
- 22. For the polynomial $6x^3 + 7x^2 + ax + b$,
 - x + 1 is a factor
 - 72 is the remainder when it is divided by x 2.
 - (a) Determine the values of a and b.
 - (b) Hence factorise the polynomial completely.

- 23. (a) Find P and Q, the points of intersection of the line y = 3x 5 and the circle C_1 with equation $x^2 + y^2 + 2x 4y 15 = 0$.
- 4

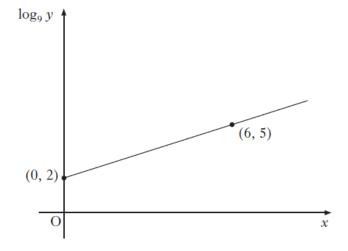
(b) T is the centre of C_1 .

Show that PT and QT are perpendicular.

3

(c) A second circle C_2 passes through P, Q and T.

Find the equation of C_2 .


3

24. Two variables, x and y, are related by the equation

Marks

$$y = ka^x$$
.

When $\log_9 y$ is plotted against x, a straight line passing through the points (0, 2) and (6, 5) is obtained, as shown in the diagram.

Find the values of k and a.

5

$[END\ OF\ SECTION\ B]$

[END OF QUESTION PAPER]