Higher Maths 2014 paper 1

Q1-20 were originally multiple choice questions worth 2 marks each.

1. A sequence is defined by the recurrence relation $u_{n+1}=\frac{1}{3} u_{n}+1$, with $u_{2}=15$. What is the value of u_{4} ?
2. The diagram shows a circle with centre $C(1,2)$ and the tangent at $T(3,-1)$.

What is the gradient of this tangent?
3. If $\log _{4} 12-\log _{4} x=\log _{4} 6$, what is the value of x ?
4. If $3 \sin x-4 \cos x$ is written in the form $k \cos (x-a)$, what are the values of $k \cos a$ and $k \sin a$?
5. Find $\int(2 x+9)^{5} d x$.
6. Given that $u=\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right)$ and $v=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$, find $2 u-3 v$ in component form.
7. A right-angled triangle has sides and angles as shown in the diagram.

What is the value of $\sin 2 a$?
8. What is the derivative of $\left(4-9 x^{4}\right)^{\frac{1}{2}}$?
9. $\sin x+\sqrt{3} \cos x$ can be written as $2 \cos \left(x-\frac{\pi}{6}\right)$.

The maximum value of $\sin x+\sqrt{3} \cos x$ is 2 .
What is the maximum value of $5 \sin 2 x+5 \sqrt{3} \cos 2 x$?
10. A sequence is defined by the recurrence relation $u_{n+1}=(k-2) u_{n}+5$ with $u_{0}=3$.
For what values of k does this sequence have a limit as $n \rightarrow \infty$?
11. The diagram shows part of the graph of $y=f(x)$.

Draw the graph of $y=2 f(x)+1$
12. A function f, defined on a suitable domain, is given by $f(x)=\frac{6 x}{x^{2}+6 x-16}$. What restrictions are there on the domain of f ?
13. What is the value of $\sin \left(\frac{\pi}{3}\right)-\cos \left(\frac{5 \pi}{4}\right)$
14. The vectors $\boldsymbol{u}=\left(\begin{array}{l}1 \\ k \\ k\end{array}\right)$ and $v=\left(\begin{array}{c}-6 \\ 2 \\ 5\end{array}\right)$ are perpendicular.

What is the value of k ?
15. The diagram shows a cubic curve passing through $(-1,0),(2,0)$ and $(0,-8)$.

What is the equation of the curve?
16. The unit vectors \boldsymbol{a} and \boldsymbol{b} are such that $\boldsymbol{a} \cdot \boldsymbol{b}=\frac{2}{3}$. Determine the value of $\boldsymbol{a} \cdot(\boldsymbol{a}+2 \boldsymbol{b})$.
17. $3 x^{2}+12 x+17$ is expressed in the form $3(x+p)^{2}+q$.

What is the value of q ?
18. What is the value of $1-2 \sin ^{2} 15^{\circ}$?

19. The diagram shows a regular hexagon PQRSTW.

 $\overrightarrow{\mathrm{PW}}$ and $\overrightarrow{\mathrm{PQ}}$ represent vectors \boldsymbol{u} and v respectively.

What is $\overrightarrow{\mathrm{SW}}$ in terms of \boldsymbol{u} and \boldsymbol{v} ?

20. Evaluate $2-\log _{5} \frac{1}{25}$.

SECTION B

ALL questions should be attempted.

21. A curve has equation $y=3 x^{2}-x^{3}$.
(a) Find the coordinates of the stationary points on this curve and determine their nature.
(b) State the coordinates of the points where the curve meets the coordinate axes and sketch the curve.
22. For the polynomial $6 x^{3}+7 x^{2}+a x+b$,

- $x+1$ is a factor
- 72 is the remainder when it is divided by $x-2$.
(a) Determine the values of a and b. 4
(b) Hence factorise the polynomial completely.

23. (a) Find P and Q , the points of intersection of the line $y=3 x-5$ and the circle C_{1} with equation $x^{2}+y^{2}+2 x-4 y-15=0$.
(b) T is the centre of C_{1}.

Show that PT and QT are perpendicular.
(c) A second circle C_{2} passes through P, Q and T .

Find the equation of C_{2}.
24. Two variables, x and y, are related by the equation

$$
y=k a^{x} .
$$

When $\log _{9} y$ is plotted against x, a straight line passing through the points $(0,2)$ and $(6,5)$ is obtained, as shown in the diagram.

Find the values of k and a.
[END OF SECTION B]

