Higher Maths 2013 paper 1

Q1-20 was originally multiple choice questions worth 2 marks each.

1. The functions f and g are defined by $f(x)=x^{2}+1$ and $g(x)=3 x-4$, on the set of real numbers.

Find $g(f(x))$.
2. The point $\mathrm{P}(5,12)$ lies on the curve with equation $y=x^{2}-4 x+7$. What is the gradient of the tangent to this curve at P ?
3. Calculate the discriminant of the quadratic equation $2 x^{2}+4 x+5=0$.
4. Draw the graph of $y=4 \cos 2 x-1$, for $0 \leq x \leq \pi$?
5. The line L passes through the point $(-2,-1)$ and is parallel to the line with equation $5 x+3 y-6=0$.
What is the equation of L ?
6. What is the remainder when $x^{3}+3 x^{2}-5 x-6$ is divided by $(x-2)$?
7. Find $\int x(3 x+2) d x$.
8. A sequence is defined by the recurrence relation $u_{n+1}=0 \cdot 1 u_{n}+8$, with $u_{1}=11$. Here are two statements about this sequence:
(1) $u_{0}=9 \cdot 1$;
(2) The sequence has a limit as $n \longrightarrow \infty$.

Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct.
C Only statement (2) is correct.
D Both statements are correct.
9. The diagram shows a right-angled triangle with sides and angles as marked.

Find the value of $\sin 2 x$.
10. Simplify $\cos (270-a)^{\circ}$
11. The diagram shows a cubic curve with equation $y=f(x)$.

Draw a possible diagram to show $y=-f(x-k)$, where $k>0$.

12. If $\mathbf{f}=3 \mathbf{i}+2 \mathbf{k}$ and $\mathbf{g}=2 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, find $|\mathbf{f}+\mathbf{g}|$.

13. A function f is defined on a suitable domain by $f(x)=\frac{x+2}{x^{2}-7 x+12}$. What value(s) of x cannot be in this domain?
14. Given that $|\mathbf{a}|=3,|\mathbf{b}|=2$ and $\mathbf{a} \cdot \mathbf{b}=5$, what is the value of $\mathbf{a} \cdot(\mathbf{a}+\mathbf{b})$?
15. Solve $\tan \left(\frac{x}{2}\right)=-1$ for $0 \leq x<2 \pi$.
16. Find $\int(1-6 x)^{-\frac{1}{2}} d x$ where $x<\frac{1}{6}$.
17. The diagram shows a curve with equation of the form $y=k x(x+a)^{2}$, which passes through the points $(-2,0),(0,0)$ and $(1,3)$.

What are the values of a and k ?
18. Given that $y=\sin \left(x^{2}-3\right)$, find $\frac{d y}{d x}$.
19. Solve $1-2 x-3 x^{2}>0$, where x is a real number.
20. The graph of $\log _{3} y$ plotted against x is a line through the origin with gradient 2 , as shown.

Express y in terms of x.
21. Express $2 x^{2}+12 x+1$ in the form $a(x+b)^{2}+c$.
22. A circle C_{1} has equation $x^{2}+y^{2}+2 x+4 y-27=0$.
(a) Write down the centre and calculate the radius of C_{1}.
(b) The point $\mathrm{P}(3,2)$ lies on the circle C_{1}.

Find the equation of the tangent at P .
(c) A second circle C_{2} has centre $(10,-1)$. The radius of C_{2} is half of the radius of C_{1}.
Show that the equation of C_{2} is $x^{2}+y^{2}-20 x+2 y+93=0$.
(d) Show that the tangent found in part (b) is also a tangent to circle C_{2}.
23. (a) The expression $\sqrt{3} \sin x^{\circ}-\cos x^{\circ}$ can be written in the form $k \sin (x-a)^{\circ}$, where $k>0$ and $0 \leq a<360$.
Calculate the values of k and a.
(b) Determine the maximum value of $4+5 \cos x^{\circ}-5 \sqrt{3} \sin x^{\circ}$, where $0 \leq x<360$.
24. (a) (i) Show that the points $\mathrm{A}(-7,-8,1), \mathrm{T}(3,2,5)$ and $\mathrm{B}(18,17,11)$ are collinear.
(ii) Find the ratio in which T divides AB .
(b) The point C lies on the x-axis.

If TB and TC are perpendicular, find the coordinates of C .

