Q1-20 was originally multiple choice questions worth 2 marks each.

The functions f and g are defined by f(x) = x² + 1 and g(x) = 3x - 4, on the set of real numbers.
Find g(f(x))

Find g(f(x)).

- 2. The point P (5, 12) lies on the curve with equation $y = x^2 4x + 7$. What is the gradient of the tangent to this curve at P?
- 3. Calculate the discriminant of the quadratic equation $2x^2 + 4x + 5 = 0$.

4. Draw the graph of $y = 4\cos 2x - 1$, for $0 \le x \le \pi$?

5. The line L passes through the point (-2, -1) and is parallel to the line with equation 5x + 3y - 6 = 0.

What is the equation of L?

- 6. What is the remainder when $x^3 + 3x^2 5x 6$ is divided by (x 2)?
- **7.** Find $\int x(3x+2) \, dx$.
- 8. A sequence is defined by the recurrence relation $u_{n+1} = 0 \cdot 1u_n + 8$, with $u_1 = 11$. Here are two statements about this sequence:
 - (1) $u_0 = 9.1;$
 - (2) The sequence has a limit as $n \rightarrow \infty$.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.

9. The diagram shows a right-angled triangle with sides and angles as marked.

Find the value of $\sin 2x$.

10. Simplify cos(270 - a)°

11. The diagram shows a cubic curve with equation y = f(x).

Draw a possible diagram to show y = -f(x - k), where k > 0.

12. If f = 3i + 2k and g = 2i + 4j + 3k, find |f + g|.

- 13. A function f is defined on a suitable domain by $f(x) = \frac{x+2}{x^2 7x + 12}$. What value(s) of x cannot be in this domain?
- 14. Given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 2$ and $\mathbf{a}.\mathbf{b} = 5$, what is the value of $\mathbf{a}.(\mathbf{a} + \mathbf{b})$?
- **15.** Solve $\tan\left(\frac{x}{2}\right) = -1$ for $0 \le x < 2\pi$.
- **16.** Find $\int (1-6x)^{-\frac{1}{2}} dx$ where $x < \frac{1}{6}$.

17. The diagram shows a curve with equation of the form $y = kx(x + a)^2$, which passes through the points (-2, 0), (0, 0) and (1, 3).

What are the values of *a* and *k*?

18. Given that
$$y = \sin(x^2 - 3)$$
, find $\frac{dy}{dx}$.

- 19. Solve $1 2x 3x^2 > 0$, where x is a real number.
- **20.** The graph of $\log_3 y$ plotted against x is a line through the origin with gradient 2, as shown.

Express y in terms of x.

21. Express $2x^2 + 12x + 1$ in the form $a(x + b)^2 + c$.

3

22.	A circle C_1 has equation $x^2 + y^2 + 2x + 4y - 27 = 0$.		
	<i>(a)</i>	Write down the centre and calculate the radius of C ₁ .	2
	(<i>b</i>)	The point $P(3, 2)$ lies on the circle C_1 . Find the equation of the tangent at P.	3
	(c)	A second circle C_2 has centre (10, -1). The radius of C_2 is half of the radius of C_1 .	U
		Show that the equation of C ₂ is $x^2 + y^2 - 20x + 2y + 93 = 0$.	3
	<i>(d)</i>	Show that the tangent found in part (b) is also a tangent to circle C_2 .	4
23.	<i>(a)</i>	The expression $\sqrt{3} \sin x^\circ - \cos x^\circ$ can be written in the form $k \sin(x - a)^\circ$, where $k > 0$ and $0 \le a < 360$.	
		Calculate the values of k and a .	4
	<i>(b)</i>	Determine the maximum value of $4 + 5\cos x^\circ - 5\sqrt{3}\sin x^\circ$, where $0 \le x < 360$.	2
24.	<i>(a)</i>	(i) Show that the points A(-7, -8, 1), T(3, 2, 5) and B(18, 17, 11) are collinear.	
		(ii) Find the ratio in which T divides AB.	4
	<i>(b)</i>	The point C lies on the <i>x</i> -axis.	
		If TB and TC are perpendicular, find the coordinates of C.	5

End of Question Paper