X100/302

NATIONAL QUALIFICATIONS 2011

WEDNESDAY, 18 MAY 10.50 AM - 12.00 NOON

MATHEMATICS HIGHER
Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}

$$
\text { or } \quad \mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. $\mathrm{D}, \mathrm{OABC}$ is a square based pyramid as shown in the diagram below.

O is the origin, D is the point $(2,2,6)$ and $O A=4$ units.
M is the mid-point of OA.
(a) State the coordinates of B.
(b) Express $\overrightarrow{\mathrm{DB}}$ and $\overrightarrow{\mathrm{DM}}$ in component form.
(c) Find the size of angle BDM.
2. Functions f, g and h are defined on the set of real numbers by

- $f(x)=x^{3}-1$
- $g(x)=3 x+1$
- $h(x)=4 x-5$.
(a) Find $g(f(x))$.
(b) Show that $g(f(x))+x h(x)=3 x^{3}+4 x^{2}-5 x-2$.
(c) (i) Show that $(x-1)$ is a factor of $3 x^{3}+4 x^{2}-5 x-2$.
(ii) Factorise $3 x^{3}+4 x^{2}-5 x-2$ fully.
(d) Hence solve $g(f(x))+x h(x)=0$.

3. (a) A sequence is defined by $u_{n+1}=-\frac{1}{2} u_{n}$ with $u_{0}=-16$.

Write down the values of u_{1} and u_{2}.
(b) A second sequence is given by $4,5,7,11, \ldots$

It is generated by the recurrence relation $v_{n+1}=p v_{n}+q$ with $v_{1}=4$.
Find the values of p and q.
(c) Either the sequence in (a) or the sequence in (b) has a limit.
(i) Calculate this limit.
(ii) Why does the other sequence not have a limit?
4. The diagram shows the curve with equation $y=x^{3}-x^{2}-4 x+4$ and the line with equation $y=2 x+4$.

The curve and the line intersect at the points $(-2,0),(0,4)$ and $(3,10)$.

Calculate the total shaded area.
5. Variables x and y are related by the equation $y=k x^{n}$.

The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line through the points $(0,5)$ and $(4,7)$, as shown in the diagram.

Find the values of k and n.

6. (a) The expression $3 \sin x-5 \cos x$ can be written in the form $R \sin (x+a)$ where $R>0$ and $0 \leq a<2 \pi$.

Calculate the values of R and a.
(b) Hence find the value of t, where $0 \leq t \leq 2$, for which

$$
\int_{0}^{t}(3 \cos x+5 \sin x) d x=3
$$

7. Circle C_{1} has equation $(x+1)^{2}+(y-1)^{2}=121$.

A circle C_{2} with equation $x^{2}+y^{2}-4 x+6 y+p=0$ is drawn inside C_{1}.
The circles have no points of contact.
What is the range of values of p ?

