Higher Maths 2011 paper 1

Q1-20 were originally multiple choice questions worth 2 marks each.

1. Given that $\mathbf{p}=\left(\begin{array}{c}2 \\ 5 \\ -7\end{array}\right), \mathbf{q}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{r}-4 \\ 2 \\ 0\end{array}\right)$, express $2 \mathbf{p}-\mathbf{q}-\frac{1}{2} \mathbf{r}$ in component form.
2. A line l has equation $3 y+2 x=6$.

What is the gradient of any line parallel to l ?
3. The diagram shows the graph of $y=f(x)$.

Draw the graph of $y=f(x+2)-1$
4. A tangent to the curve with equation $y=x^{3}-2 x$ is drawn at the point $(2,4)$. What is the gradient of this tangent?
5. If $x^{2}-8 x+7$ is written in the form $(x-p)^{2}+q$, what is the value of q ?
6. The point $\mathrm{P}(2,-3)$ lies on the circle with centre C as shown.

The gradient of CP is -2 .
What is the equation of the tangent at P ?

7. A function f is defined on the set of real numbers by $f(x)=x^{3}-x^{2}+x+3$.

What is the remainder when $f(x)$ is divided by $(x-1)$?
8. A line makes an angle of 30° with the positive direction of the x-axis as shown.

What is the gradient of the line?
9. The discriminant of a quadratic equation is 23 .

Here are two statements about this quadratic equation:
(1) the roots are real;
(2) the roots are rational.

Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct.
C Only statement (2) is correct.
D Both statements are correct.
10. Solve $2 \cos x=\sqrt{3}$ for x, where $0 \leq x<2 \pi$.
11. Find $\int\left(4 x^{\frac{1}{2}}+x^{-3}\right) d x$, where $x>0$.
12. The diagram shows two right-angled triangles with sides and angles as given.

What is the value of $\sin (p+q)$?
13. Given that $f(x)=4 \sin 3 x$, find $f^{\prime}(0)$.
14. An equilateral triangle of side 3 units is shown.

The vectors \mathbf{p} and \mathbf{q} are as represented in the diagram.
What is the value of $\mathbf{p} . \mathbf{q}$?

15. Given that the points $S(-4,5,1), T(-16,-4,16)$ and $U(-24,-10,26)$ are collinear, calculate the ratio in which T divides SU .
16. Find $\int \frac{1}{3 x^{4}} d x$, where $x \neq 0$.
17. The diagram shows the graph of a cubic.

What is the equation of this cubic?
18. If $f(x)=(x-3)(x+5)$, for what values of x is the graph of $y=f(x)$ above the x-axis?
19. Draw the graph of $x=\log _{3} y$
20. On a suitable domain, D , a function g is defined by $g(x)=\sin ^{2} \sqrt{x-2}$.

Which of the following gives the real values of x in D and the corresponding values of $g(x)$?
A $\quad x \geq 0 \quad$ and $\quad-1 \leq g(x) \leq 1$
B $\quad x \geq 0 \quad$ and $\quad 0 \leq g(x) \leq 1$
C $x \geq 2$ and $-1 \leq g(x) \leq 1$
D $x \geq 2$ and $0 \leq g(x) \leq 1$
21. A quadrilateral has vertices $A(-1,8), B(7,12), C(8,5)$ and $D(2,-3)$ as shown in the diagram.

(a) Find the equation of diagonal BD.
(b) The equation of diagonal AC is $x+3 y=23$.

Find the coordinates of E , the point of intersection of the diagonals.
(c) (i) Find the equation of the perpendicular bisector of AB .
(ii) Show that this line passes through E.
22. A function f is defined on the set of real numbers by $f(x)=(x-2)\left(x^{2}+1\right)$.
(a) Find where the graph of $y=f(x)$ cuts:
(i) the x-axis;
(ii) the y-axis.
(b) Find the coordinates of the stationary points on the curve with equation $y=f(x)$ and determine their nature.
(c) On separate diagrams sketch the graphs of:
(i) $y=f(x)$;
(ii) $y=-f(x)$.
23. (a) Solve $\cos 2 x^{\circ}-3 \cos x^{\circ}+2=0$ for $0 \leq x<360$.
(b) Hence solve $\cos 4 x^{\circ}-3 \cos 2 x^{\circ}+2=0$ for $0 \leq x<360$.

