# X100/13/01

NATIONAL QUALIFICATIONS 1.00 PM - 4.00 PM 2013

WEDNESDAY, 22 MAY

## MATHEMATICS ADVANCED HIGHER

#### **Read carefully**

- 1 Calculators may be used in this paper.
- 2 Candidates should answer all questions.
- 3 Full credit will be given only where the solution contains appropriate working.





### Answer all the questions

|    | $\sim 100$ m $\sim 100$                                        |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. | Write down the binomial expansion of $\left(3x - \frac{2}{x^2}\right)^4$ and simplify your answer.                                                        | 4 |
| 2. | Differentiate $f(x) = e^{\cos x} \sin^2 x$ .                                                                                                              | 3 |
| 3. | Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 2 \end{pmatrix}$ .             |   |
|    | (a) Find $A^2$ .                                                                                                                                          | 1 |
|    | (b) Find the value of $p$ for which $A^2$ is singular.                                                                                                    | 2 |
|    | (c) Find the values of $p$ and $x$ if $B = 3A'$ .                                                                                                         | 2 |
| 4. | The velocity, $v$ , of a particle $P$ at time $t$ is given by<br>$v = e^{3t} + 2e^{t}$ .                                                                  |   |
|    | (a) Find the acceleration of $P$ at time $t$ .                                                                                                            | 2 |
|    | (b) Find the distance covered by P between $t = 0$ and $t = \ln 3$ .                                                                                      | 3 |
| 5. | Use the Euclidean algorithm to obtain the greatest common divisor of 1204 and 833, expressing it in the form $1204a + 833b$ , where a and b are integers. | 4 |
| 6. | Integrate $\frac{\sec^2 3x}{1 + \tan 3x}$ with respect to x.                                                                                              | 4 |
| 7. | Given that $z = 1 - \sqrt{3}i$ , write down $\overline{z}$ and express $\overline{z}^2$ in polar form.                                                    | 4 |
| 8. | Use integration by parts to obtain $\int x^2 \cos 3x  dx$ .                                                                                               | 5 |
| 9. | Prove by induction that, for all positive integers $n$ ,                                                                                                  |   |
|    | $\sum_{r=1}^{n} \left( 4r^3 + 3r^2 + r \right) = n(n+1)^3 $                                                                                               | 6 |
|    |                                                                                                                                                           |   |

**10.** Describe the loci in the complex plane given by:

- (a) |z+i|=1;
- (b) |z-1| = |z+5|.

**11.** A curve has equation

$$x^2 + 4xy + y^2 + 11 = 0$$

Find the values of  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  at the point (-2, 3).

**12.** Let *n* be a natural number.

For each of the following statements, decide whether it is true or false. If true, give a proof; if false, give a counterexample.

**A** If *n* is a multiple of 9 then so is  $n^2$ .

- **B** If  $n^2$  is a multiple of 9 then so is n.
- **13.** Part of the straight line graph of a function f(x) is shown.



- (a) Sketch the graph of  $f^{-1}(x)$ , showing points of intersection with the axes.
- (b) State the value of k for which f(x) + k is an odd function.
- (c) Find the value of h for which |f(x + h)| is an even function.

[Turn over for Questions 14 to 17 on Page four

Page three

Marks

2

3

6

4

2

1

2

14. Solve the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 4e^{3x}$$
, given that  $y = 1$  and  $\frac{dy}{dx} = -1$  when  $x = 0$ . 11

- **15.** (a) Find an equation of the plane  $\pi_1$ , through the points A(0, -1, 3), B(1, 0, 3) and C(0, 0, 5).
  - (b) π<sub>2</sub> is the plane through A with normal in the direction -j + k.
    Find an equation of the plane π<sub>2</sub>.
  - (c) Determine the acute angle between planes  $\pi_1$  and  $\pi_2$ .
- 16. In an environment without enough resources to support a population greater than 1000, the population P(t) at time t is governed by Verhurst's law

$$\frac{dP}{dt} = P(1000 - P).$$

Show that

$$\ln \frac{P}{1000 - P} = 1000t + C \quad \text{for some constant } C.$$

Hence show that

$$P(t) = \frac{1000K}{K + e^{-1000t}} \qquad \text{for some constant } K.$$

Given that P(0) = 200, determine at what time t, P(t) = 900.

17. Write down the sums to infinity of the geometric series

$$1 + x + x^2 + x^3 + \dots$$

and

$$1 - x + x^2 - x^3 + \dots$$

valid for |x| < 1.

Assuming that it is permitted to integrate an infinite series term by term, show that, for |x| < 1,

$$\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right).$$

Show how this series can be used to evaluate ln 2.

Hence determine the value of ln 2 correct to 3 decimal places.

[END OF QUESTION PAPER]

#### [X100/13/01]

Page four

3

7

4

2

3

4

3

3