Answer all the questions.

1. Express the binomial expansion of $\left(x-\frac{2}{x}\right)^{4}$ in the form $a x^{4}+b x^{2}+c+\frac{d}{x^{2}}+\frac{e}{x^{4}}$ for integers a, b, c, d and e.
2. Obtain the derivative of each of the following functions:
(a) $f(x)=\exp (\sin 2 x)$;
(b) $y=4^{\left(x^{2}+1\right)}$.
3. Show that $z=3+3 i$ is a root of the equation $z^{3}-18 z+108=0$ and obtain the remaining roots of the equation.
4. Express $\frac{2 x^{2}-9 x-6}{x\left(x^{2}-x-6\right)}$ in partial fractions.

Given that

$$
\int_{4}^{6} \frac{2 x^{2}-9 x-6}{x\left(x^{2}-x-6\right)} d x=\ln \frac{m}{n}
$$

determine values for the integers m and n.
5. Matrices A and B are defined by

$$
A=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
x+2 & x-2 & x+3 \\
-4 & 4 & 2 \\
2 & -2 & 3
\end{array}\right)
$$

(a) Find the product $A B$.
(b) Obtain the determinants of A and of $A B$.

Hence, or otherwise, obtain an expression for $\operatorname{det} B$.
6. Find the Maclaurin series for $\cos x$ as far as the term in x^{4}.

Deduce the Maclaurin series for $f(x)=\frac{1}{2} \cos 2 x$ as far as the term in x^{4}.
Hence write down the first three non-zero terms of the series for $f(3 x)$.
7. Use the Euclidean algorithm to find integers p and q such that $599 p+53 q=1$.
8. Obtain the general solution of the equation $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=e^{2 x}$.
9. Show that $\sum_{r=1}^{n}(4-6 r)=n-3 n^{2}$.

2

Hence write down a formula for $\sum_{r=1}^{2 q}(4-6 r)$.
1

Show that $\sum_{r=q+1}^{2 q}(4-6 r)=q-9 q^{2}$.
10. Use the substitution $u=1+x^{2}$ to obtain $\int_{0}^{1} \frac{x^{3}}{\left(1+x^{2}\right)^{4}} d x$.

A solid is formed by rotating the curve $y=\frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}}$ between $x=0$ and $x=1$ through 360° about the x-axis. Write down the volume of this solid.
11. Given that $|z-2|=|z+i|$, where $z=x+i y$, show that $a x+b y+c=0$ for suitable values of a, b and c.
Indicate on an Argand diagram the locus of complex numbers z which satisfy $|z-2|=|z+i|$.
12. Prove by induction that for $a>0$,

$$
(1+a)^{n} \geq 1+n a
$$

for all positive integers n.
13. A curve is defined by the parametric equations $x=\cos 2 t, y=\sin 2 t, 0<t<\frac{\pi}{2}$.
(a) Use parametric differentiation to find $\frac{d y}{d x}$.

Hence find the equation of the tangent when $t=\frac{\pi}{8}$.
(b) Obtain an expression for $\frac{d^{2} y}{d x^{2}}$ and hence show that $\sin 2 t \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=k$, where k is an integer. State the value of k.
14. A garden centre advertises young plants to be used as hedging.

After planting, the growth G metres (ie the increase in height) after t years is modelled by the differential equation

$$
\frac{d G}{d t}=\frac{25 k-G}{25}
$$

where k is a constant and $G=0$ when $t=0$.
(a) Express G in terms of t and k.
(b) Given that a plant grows 0.6 metres by the end of 5 years, find the value of k correct to 3 decimal places.
(c) On the plant labels it states that the expected growth after 10 years is approximately 1 metre. Is this claim justified?
(d) Given that the initial height of the plants was 0.3 m , what is the likely long-term height of the plants?
15. Lines L_{1} and L_{2} are given by the parametric equations

$$
L_{1}: x=2+s, y=-s, z=2-s \quad L_{2}: x=-1-2 t, y=t, z=2+3 t
$$

(a) Show that L_{1} and L_{2} do not intersect.
(b) The line L_{3} passes through the point $P(1,1,3)$ and its direction is perpendicular to the directions of both L_{1} and L_{2}. Obtain parametric equations for L_{3}.
(c) Find the coordinates of the point Q where L_{3} and L_{2} intersect and verify that P lies on L_{1}.
(d) $P Q$ is the shortest distance between the lines L_{1} and L_{2}. Calculate $P Q$.
16.

(a) The diagram shows part of the graph of $f(x)=\tan ^{-1} 2 x$ and its asymptotes. State the equations of these asymptotes.
(b) Use integration by parts to find the area between $f(x)$, the x-axis and the lines $x=0, x=\frac{1}{2}$.
(c) Sketch the graph of $y=|f(x)|$ and calculate the area between this graph, the x-axis and the lines $x=-\frac{1}{2}, x=\frac{1}{2}$.

