Answer all the questions.

1. Calculate the inverse of the matrix $\left(\begin{array}{rr}2 & x \\ -1 & 3\end{array}\right)$.

For what value of x is this matrix singular?
2. Differentiate, simplifying your answers:
(a) $2 \tan ^{-1} \sqrt{1+x}$, where $x>-1$;
(b) $\frac{1+\ln x}{3 x}$, where $x>0$.
3. Express the complex number $z=-i+\frac{1}{1-i}$ in the form $z=x+i y$, stating the
values of x and y.

Find the modulus and argument of z and plot z and \bar{z} on an Argand diagram.
4. Given $x y-x=4$, use implicit differentiation to obtain $\frac{d y}{d x}$ in terms of x and y. Hence obtain $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
5. Obtain algebraically the fixed point of the iterative scheme given by

$$
\begin{equation*}
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}^{2}}\right), \quad n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

6. Find $\int \frac{12 x^{3}-6 x}{x^{4}-x^{2}+1} d x$.
7. For all natural numbers n, prove whether the following results are true or false.
(a) $n^{3}-n$ is always divisible by 6 .
(b) $n^{3}+n+5$ is always prime.
8. Solve the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0 \tag{6}
\end{equation*}
$$

given that when $x=0, y=0$ and $\frac{d y}{d x}=2$.
9. Use Gaussian elimination to obtain solutions of the equations

$$
\begin{array}{r}
2 x-y+2 z=1 \\
x+y-2 z=2 \\
x-2 y+4 z=-1
\end{array}
$$

10. The amount x micrograms of an impurity removed per kg of a substance by a chemical process depends on the temperature $T^{\circ} \mathrm{C}$ as follows:

$$
x=T^{3}-90 T^{2}+2400 T, \quad 10 \leq T \leq 60 .
$$

At what temperature in the given range should the process be carried out to remove as much impurity per kg as possible?
11. Show that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$, where $0<\theta<\frac{\pi}{2}$.

By expressing $y=\cot ^{-1} x$ as $x=\cot y$, obtain $\frac{d y}{d x}$ in terms of x.
12.

The diagram shows part of the graph of a function f which satisfies the following conditions:
(i) f is an even function;
(ii) two of the asymptotes of the graph $y=f(x)$ are $y=x$ and $x=1$.

Copy the diagram and complete the graph. Write down equations for the other two asymptotes.
13. The square matrices A and B are such that $A B=B A$. Prove by induction that $A^{n} B=B A^{n}$ for all integers $n \geq 1$.
14. (a) Determine whether $f(x)=x^{2} \sin x$ is odd, even or neither. Justify your answer.
(b) Use integration by parts to find $\int x^{2} \sin x d x$.
(c) Hence find the area bounded by $y=x^{2} \sin x$, the lines $x=-\frac{\pi}{4}, x=\frac{\pi}{4}$ and the x-axis.
15. Obtain an equation for the plane passing through the point $P(1,1,0)$ which is perpendicular to the line L given by

$$
\frac{x+1}{2}=\frac{y-2}{1}=\frac{z}{-1}
$$

Find the coordinates of the point Q where the plane and L intersect.
Hence, or otherwise, obtain the shortest distance from P to L and explain why this is the shortest distance.
16. The first three terms of a geometric sequence are

$$
\frac{x(x+1)}{(x-2)}, \frac{x(x+1)^{2}}{(x-2)^{2}} \text { and } \frac{x(x+1)^{3}}{(x-2)^{3}}, \text { where } x<2
$$

(a) Obtain expressions for the common ratio and the nth term of the sequence.
(b) Find an expression for the sum of the first n terms of the sequence.
(c) Obtain the range of values of x for which the sequence has a sum to infinity and find an expression for the sum to infinity.
17. (a) Show that $\int \sin ^{2} x \cos ^{2} x d x=\int \cos ^{2} x d x-\int \cos ^{4} x d x$.
(b) By writing $\cos ^{4} x=\cos x \cos ^{3} x$ and using integration by parts, show that

$$
\begin{equation*}
\int_{0}^{\pi / 4} \cos ^{4} x d x=\frac{1}{4}+3 \int_{0}^{\pi / 4} \sin ^{2} x \cos ^{2} x d x \tag{3}
\end{equation*}
$$

(c) Show that $\int_{0}^{\pi / 4} \cos ^{2} x d x=\frac{\pi+2}{8}$.
(d) Hence, using the above results, show that

$$
\int_{0}^{\pi / 4} \cos ^{4} x d x=\frac{3 \pi+8}{32}
$$

