Answer all the questions.

1.	Calculate the inverse of the matrix $\begin{pmatrix} 2 & x \\ -1 & 3 \end{pmatrix}$.	
	For what value of x is this matrix singular?	4
2.	Differentiate, simplifying your answers: (a) $2 \tan^{-1} \sqrt{1+x}$, where $x > -1$;	3
	(b) $\frac{1+\ln x}{3x}$, where $x > 0$.	3
3.	Express the complex number $z = -i + \frac{1}{1-i}$ in the form $z = x + iy$, stating the values of x and y.	3
	Find the modulus and argument of z and plot z and \overline{z} on an Argand diagram.	4
4.	Given $xy - x = 4$, use implicit differentiation to obtain $\frac{dy}{dx}$ in terms of x and y.	2
	Hence obtain $\frac{d^2 y}{dx^2}$ in terms of x and y.	3

5. Obtain algebraically the fixed point of the iterative scheme given by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n^2} \right), \qquad n = 0, \ 1, \ 2, \ \dots$$
 3

6. Find
$$\int \frac{12x^3 - 6x}{x^4 - x^2 + 1} dx$$
.

- 7. For all natural numbers *n*, prove whether the following results are true or false.
 - (a) $n^3 n$ is always divisible by 6.
 - (b) $n^3 + n + 5$ is always prime.
- 8. Solve the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0,$$

given that when x = 0, y = 0 and $\frac{dy}{dx} = 2$.

6

5

- 9. Use Gaussian elimination to obtain solutions of the equations
 - 2x y + 2z = 1 x + y - 2z = 2x - 2y + 4z = -1

10. The amount x micrograms of an impurity removed per kg of a substance by a chemical process depends on the temperature $T \circ C$ as follows:

 $x = T^3 - 90T^2 + 2400T, \qquad 10 \le T \le 60.$

At what temperature in the given range should the process be carried out to remove as much impurity per kg as possible?

11. Show that $1 + \cot^2 \theta = \csc^2 \theta$, where $0 < \theta < \frac{\pi}{2}$. By expressing $y = \cot^{-1}x$ as $x = \cot y$, obtain $\frac{dy}{dx}$ in terms of x. 3

12.

(i) f is an even function;

(ii) two of the asymptotes of the graph y = f(x) are y = x and x = 1.

Copy the diagram and complete the graph. Write down equations for the other two asymptotes.

13. The square matrices A and B are such that AB = BA. Prove by induction that $A^nB = BA^n$ for all integers $n \ge 1$.

[Turn over for Questions 14 to 17 on Page four

5

4

3

5

			Marh
14.	(<i>a</i>)	Determine whether $f(x) = x^2 \sin x$ is odd, even or neither. Justify your answer.	3
	<i>(b)</i>	Use integration by parts to find $\int x^2 \sin x dx$.	4
	(c)	Hence find the area bounded by $y = x^2 \sin x$, the lines $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$ and the x-axis.	3
15.	Obt perj	ain an equation for the plane passing through the point $P(1, 1, 0)$ which is pendicular to the line L given by	
		$\frac{x+1}{2} = \frac{y-2}{1} = \frac{z}{-1}.$	3
	Fine	d the coordinates of the point Q where the plane and L intersect.	4
	Her this	ace, or otherwise, obtain the shortest distance from P to L and explain why is the shortest distance.	2, 1
16.	The	e first three terms of a geometric sequence are	
		$\frac{x(x+1)}{(x-2)}$, $\frac{x(x+1)^2}{(x-2)^2}$ and $\frac{x(x+1)^3}{(x-2)^3}$, where $x < 2$.	
	(<i>a</i>)	Obtain expressions for the common ratio and the <i>n</i> th term of the sequence.	3
	<i>(b)</i>	Find an expression for the sum of the first n terms of the sequence.	3
	(c)	Obtain the range of values of x for which the sequence has a sum to infinity and find an expression for the sum to infinity.	4
17.	(<i>a</i>)	Show that $\int \sin^2 x \cos^2 x dx = \int \cos^2 x dx - \int \cos^4 x dx.$	1
	<i>(b)</i>	By writing $\cos^4 x = \cos x \cos^3 x$ and using integration by parts, show that	
		$\int_0^{\pi/4} \cos^4 x dx = \frac{1}{4} + 3 \int_0^{\pi/4} \sin^2 x \cos^2 x dx.$	3
	(c)	Show that $\int_{0}^{\pi/4} \cos^2 x dx = \frac{\pi+2}{8}.$	3
	(<i>d</i>)	Hence, using the above results, show that	
		$\int_0^{\pi/4} \cos^4 x dx = \frac{3\pi + 8}{32}.$	3
		[END OF QUESTION PAPER]	

[X100/701]

Page four