Answer all the questions.

1. (a) Given $f(x)=x^{3} \tan 2 x$, where $0<x<\frac{\pi}{4}$, obtain $f^{\prime}(x)$.
(b) For $y=\frac{1+x^{2}}{1+x}$, where $x \neq-1$, determine $\frac{d y}{d x}$ in simplified form.
2. Given the equation $2 y^{2}-2 x y-4 y+x^{2}=0$ of a curve, obtain the x-coordinate of each point at which the curve has a horizontal tangent.
3. Write down the Maclaurin expansion of e^{x} as far as the term in x^{4}.

Deduce the Maclaurin expansion of $e^{x^{2}}$ as far as the term in x^{4}.
Hence, or otherwise, find the Maclaurin expansion of $e^{x+x^{2}}$ as far as the term in x^{4}.
4. The sum, $S(n)$, of the first n terms of a sequence, $u_{1}, u_{2}, u_{3}, \ldots$ is given by $S(n)=8 n-n^{2}, n \geq 1$.
Calculate the values of u_{1}, u_{2}, u_{3} and state what type of sequence it is.
3
Obtain a formula for u_{n} in terms of n, simplifying your answer.
5. Use the substitution $u=1+x$ to evaluate $\int_{0}^{3} \frac{x}{\sqrt{1+x}} d x$.
6. Use Gaussian elimination to solve the system of equations below when $\lambda \neq 2$:

$$
\begin{array}{r}
x+y+2 z=1 \\
2 x+\dot{\lambda} y+z=0 \\
3 x+3 y+9 z=5
\end{array}
$$

Explain what happens when $\lambda=2$.
7. Given the matrix $A=\left(\begin{array}{rrr}0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3\end{array}\right)$, show that $A^{2}+A=k I$ for some constant k, where I is the 3×3 unit matrix.
Obtain the values of p and q for which $A^{-1}=p A+q I$.
8. The equations of two planes are $x-4 y+2 z=1$ and $x-y-z=-5$. By letting $z=t$, or otherwise, obtain parametric equations for the line of intersection of the planes.
Show that this line lies in the plane with equation

$$
x+2 y-4 z=-11
$$

9. Given the equation $z+2 i \bar{z}=8+7 i$, express z in the form $a+i b$.
10. Prove by induction that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}
$$

State the value of $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$.
11. The diagram shows part of the graph of $y=\frac{x^{3}}{x-2}, x \neq 2$.

(a) Write down the equation of the vertical asymptote.
(b) Find the coordinates of the stationary points of the graph of $y=\frac{x^{3}}{x-2}$.
(c) Write down the coordinates of the stationary points of the graph of $y=\left|\frac{x^{3}}{x-2}\right|+1$.
12. Let $z=\cos \theta+i \sin \theta$.
(a) Use the binomial expansion to express z^{4} in the form $u+i v$, where u and v are expressions involving $\sin \theta$ and $\cos \theta$.
(b) Use de Moivre's theorem to write down a second expression for z^{4}.
(c) Using the results of (a) and (b), show that

$$
\frac{\cos 4 \theta}{\cos ^{2} \theta}=p \cos ^{2} \theta+q \sec ^{2} \theta+r, \text { where }-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

stating the values of p, q and r.
13. Express $\frac{1}{x^{3}+x}$ in partial fractions.

Obtain a formula for $I(k)$, where $I(k)=\int_{1}^{k} \frac{1}{x^{3}+x} d x$, expressing it in the form $\ln \left(\frac{a}{b}\right)$ where a and b depend on k.

Write down an expression for $e^{I(k)}$ and obtain the value of $\lim _{k \rightarrow \infty} e^{I(k)}$.
14. Obtain the general solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=20 \sin x \tag{7}
\end{equation*}
$$

Hence find the particular solution for which $y=0$ and $\frac{d y}{d x}=0$ when $x=0$.
15. (a) Given $f(x)=\sqrt{\sin x}$, where $0<x<\pi$, obtain $f^{\prime}(x)$.
(b) If, in general, $f(x)=\sqrt{g(x)}$, where $g(x)>0$, show that $f^{\prime}(x)=\frac{g^{\prime}(x)}{k \sqrt{g(x)}}$,
stating the value of k.

Hence, or otherwise, find $\int \frac{x}{\sqrt{1-x^{2}}} d x$.
(c) Use integration by parts and the result of (b) to evaluate

$$
\begin{equation*}
\int_{0}^{1 / 2} \sin ^{-1} x d x \tag{4}
\end{equation*}
$$

[END OF QUESTION PAPER]

