Answer all the questions.

1.	(a) Given $f(x) = x^3 \tan 2x$, where $0 < x < \frac{\pi}{4}$, obtain $f'(x)$.	3
	(b) For $y = \frac{1+x^2}{1+x}$, where $x \neq -1$, determine $\frac{dy}{dx}$ in simplified form.	3
2.	Given the equation $2y^2 - 2xy - 4y + x^2 = 0$ of a curve, obtain the <i>x</i> -coordinate of each point at which the curve has a horizontal tangent.	4
3.	Write down the Maclaurin expansion of e^x as far as the term in x^4 .	2
	Deduce the Maclaurin expansion of e^{x^2} as far as the term in x^4 .	1
	Hence, or otherwise, find the Maclaurin expansion of $e^{x + x^2}$ as far as the term in x^4 .	3
4.	The sum, $S(n)$, of the first <i>n</i> terms of a sequence, u_1, u_2, u_3, \ldots is given by $S(n) = 8n - n^2, n \ge 1$.	
	Calculate the values of u_1 , u_2 , u_3 and state what type of sequence it is.	3
	Obtain a formula for u_n in terms of n , simplifying your answer.	2
5.	Use the substitution $u = 1 + x$ to evaluate $\int_0^3 \frac{x}{\sqrt{1+x}} dx$.	5
6.	Use Gaussian elimination to solve the system of equations below when $\lambda \neq 2$:	
	x + y + 2z = 1	
	$2x + \lambda y + z = 0$	
	3x + 3y + 9z = 5.	4
	Explain what happens when $\lambda = 2$.	2
7.	Given the matrix $A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$, show that $A^2 + A = kI$ for some	
	constant k, where I is the 3×3 unit matrix.	4
	Obtain the values of p and q for which $A^{-1} = pA + qI$.	2
8.	The equations of two planes are $x - 4y + 2z = 1$ and $x - y - z = -5$. By letting $z = t$ or otherwise obtain percentric equations for the line of interval.	
	z = t, or otherwise, obtain parametric equations for the line of intersection of the planes.	4
	Show that this line lies in the plane with equation	

$$x + 2y - 4z = -11.$$

Page two

1

- 9. Given the equation $z + 2i\overline{z} = 8 + 7i$, express z in the form a + ib.
- 10. Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}.$$
5

State the value of
$$\lim_{n\to\infty} \sum_{r=1}^n \frac{1}{r(r+1)(r+2)}$$
.

11. The diagram shows part of the graph of $y = \frac{x^3}{x-2}, x \neq 2$.

- (a) Write down the equation of the vertical asymptote.1(b) Find the coordinates of the stationary points of the graph of $y = \frac{x^3}{x-2}$.4
 - (c) Write down the coordinates of the stationary points of the graph of $y = \left| \frac{x^3}{x-2} \right| + 1.$

12. Let $z = \cos \theta + i \sin \theta$.

- (a) Use the binomial expansion to express z^4 in the form u + iv, where u and v are expressions involving $\sin \theta$ and $\cos \theta$.
- (b) Use de Moivre's theorem to write down a second expression for z^4 .
- (c) Using the results of (a) and (b), show that

$$\frac{\cos 4\theta}{\cos^2 \theta} = p \cos^2 \theta + q \sec^2 \theta + r, \text{ where } -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

stating the values of p, q and r.

[Turn over for Questions 13, 14 and 15 on Page four

Page three

6

2

3

1

Marks 4

1

13. Express $\frac{1}{x^3 + x}$ in partial fractions.

Obtain a formula for I(k), where $I(k) = \int_{1}^{k} \frac{1}{x^{3} + x} dx$, expressing it in the form $\left\{ w \left(\frac{a}{b} \right) \right\}$ where a and b depend on k.

Write down an expression for $e^{I(k)}$ and obtain the value of $\lim_{k \to \infty} e^{I(k)}$.

14. Obtain the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 20\sin x.$$
7

Hence find the particular solution for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0.

15. (a) Given
$$f(x) = \sqrt{\sin x}$$
, where $0 < x < \pi$, obtain $f'(x)$.

(b) If, in general,
$$f(x) = \sqrt{g(x)}$$
, where $g(x) > 0$, show that $f'(x) = \frac{g'(x)}{k\sqrt{g(x)}}$,
stating the value of k.
Hence, or otherwise, find $\int \frac{x}{\sqrt{1-x^2}} dx$.

(c) Use integration by parts and the result of (b) to evaluate

$$\sin^{-1/2} \sin^{-1} x \, dx.$$
 4

[END OF QUESTION PAPER]

Marks 4

4

2

3

1