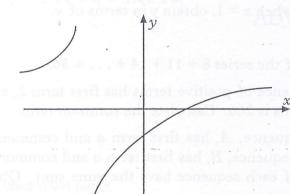
Answer all the questions.

Marks

1.	(a) Given $f(x) = \cos^2 x \ e^{\tan x}$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, obtain $f'(x)$ and evaluate $f'(\frac{\pi}{4})$.	3,1	
	(b) Differentiate $g(x) = \frac{\tan^{-1} 2x}{1 + 4x^2}$.	3	
2.	Obtain the binomial expansion of $(a^2 - 3)^4$.	3	
3.	A curve is defined by the equations	•	
	$x = 5\cos\theta, \qquad y = 5\sin\theta, \qquad (0 \le \theta < 2\pi).$		
	Use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ .	2	
	Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$.	3	
4.	Given $z = 1 + 2i$, express $z^2(z + 3)$ in the form $a + ib$.	2	
	Hence, or otherwise, verify that $1 + 2i$ is a root of the equation	t • •	
	$z^3 + 3z^2 - 5z + 25 = 0.$	2	
	Obtain the other roots of this equation.	2	
5.	Express $\frac{1}{x^2 - x - 6}$ in partial fractions.	2	
	Evaluate $\int_0^1 \frac{1}{x^2 - x - 6} dx.$	4	
6.	Write down the 2 \times 2 matrix M_1 associated with an anti-clockwise rotation of $\frac{\pi}{2}$ radians about the origin.	2	
	Write down the matrix M_2 associated with reflection in the x-axis.	1	
	Evaluate M_2M_1 and describe geometrically the effect of the transformation represented by M_2M_1 .	2	
-			
7.	Obtain the first three non-zero terms in the Maclaurin expansion of $f(x) = e^x \sin x$.	5	
8.	Use the Euclidean algorithm to show that $(231, 17) = 1$ where (a, b) denotes the highest common factor of a and b .	•	
	Hence find integers x and y such that $231x + 17y = 1$.	4	
9.	Use the substitution $x = (u-1)^2$ to obtain $\int \frac{1}{(1+\sqrt{x})^3} dx$.	5	1. 1. 1/10/10-10

Page two

- 10. Determine whether the function $f(x) = x^4 \sin 2x$ is odd, even or neither. Justify your answer.
- 11. A solid is formed by rotating the curve $y = e^{-2x}$ between x = 0 and x = 1 through 360° about the x-axis. Calculate the volume of the solid that is formed.
- 12. Prove by induction that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$ for all integers $n \ge 1$.
- 13. The function f is defined by $f(x) = \frac{x-3}{x+2}$, $x \neq -2$, and the diagram shows part of its graph.



- (a) Obtain algebraically the asymptotes of the graph of f.
- (b) Prove that f has no stationary values.
- (c) Does the graph of f have any points of inflexion? Justify your answer.
- (d) Sketch the graph of the inverse function, f^{-1} . State the asymptotes and domain of f^{-1} .
- (a) Find an equation of the plane π_1 containing the points A(1, 0, 3), B(0, 2, -1) and C(1, 1, 0).

Calculate the size of the acute angle between π_1 and the plane π_2 with equation x + y - z = 0.

(b) Find the point of intersection of plane π_2 and the line

$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2}$$

[Turn over for Questions 15 and 16 on Page four

Marks

3

5

3

2

2

3

4

3

3

14.

Page three

Marks

5

2

4

2

3

3

2

 $x\frac{dy}{dx}-3y=x^4$ models a process. Find the general solution of the

A mathematical biologist believes that the differential equation

differential equation.

15.

(a)

Given that y = 2 when x = 1, find the particular solution, expressing y in terms of x.

(b) The biologist subsequently decides that a better model is given by the

equation
$$y \frac{dy}{dx} - 3x = x^4$$
.

Given that y = 2 when x = 1, obtain y in terms of x.

- 16. (a) Obtain the sum of the series 8 + 11 + 14 + ... + 56.
 - (b) A geometric sequence of positive terms has first term 2, and the sum of the first three terms is 266. Calculate the common ratio.
 - (c) An arithmetic sequence, A, has first term a and common difference 2, and a geometric sequence, B, has first term a and common ratio 2. The first four terms of each sequence have the same sum. Obtain the value of a.

Obtain the smallest value of n such that the sum to n terms for sequence B is more than **twice** the sum to n terms for sequence A.

[END OF QUESTION PAPER]