Answer all the questions.

1. (a) Given $f(x)=\cos ^{2} x e^{\tan x},-\frac{\pi}{2}<x<\frac{\pi}{2}$, obtain $f^{\prime}(x)$ and evaluate $f^{\prime}\left(\frac{\pi}{4}\right)$.
(b) Differentiate $g(x)=\frac{\tan ^{-1} 2 x}{1+4 x^{2}}$.
2. Obtain the binomial expanision of $\left(a^{2}-3\right)^{4}$.
3. A curve is defined by the equations

$$
x=5 \cos \theta, \quad y=5 \sin \theta, \quad(0 \leq \theta<2 \pi) .
$$

Use parametric differentiation to find $\frac{d y}{d x}$ in terms of θ.
Find the equation of the tangent to the curve at the point where $\theta=\frac{\pi}{4}$.
4. Given $z=1+2 i$, express $z^{2}(z+3)$ in the form $a+i b$.

Hence, or otherwise, verify that $1+2 i$ is a root of the equation

$$
z^{3}+3 z^{2}-5 z+25=0
$$

Obtain the other roots of this equation.
5. Express $\frac{1}{x^{2}-x-6}$ in partial fractionṣ. . \because

Evaluate $\int_{0}^{1} \frac{1}{x^{2}-x-6} d x$.
4
6. Write down the 2×2 matrix M_{1} associated with an anti-clockwise rotation of $\frac{\pi}{2}$ radians about the origin.
Write down the matrix M_{2} associated with reflection in the x-axis.
Evaluate $M_{2} M_{1}$ and describe geometrically the effect of the transformation represented by $M_{2} M_{1}$.
7. Obtain the first three non-zero terms in the Maclaurin expansion of $f(x)=e^{x} \sin x$.
8. Use the Euclidean algorithm to show that $(231,17)=1$ where (a, b) denotes the highest common factor of a and b.
Hence find integers x and y such that $231 x+17 y=1$.
9. Use the substitution $x=(u-1)^{2}$ to obtain $\int \frac{1}{(1+\sqrt{x})^{3}} d x$.
10. Determine whether the function $f(x)=x^{4} \sin 2 x$ is odd, even or neither.

Justify your answer.
11. A solid is formed by rotating the curve $y=e^{-2 x}$ between $x=0$ and $x=1$ through 360° about the x-axis. Calculate the volume of the solid that is formed.
12. Prove by induction that $\frac{d^{n}}{d x^{n}}\left(x e^{x}\right)=(x+n) e^{x}$ for all integers $n \geq 1$.
13. The function f is defined by $f(x)=\frac{x-3}{x+2}, x \neq-2$, and the diagram shows part of its graph.

(a) Obtain algebraically the asymptotes of the graph of f.
(b) Prove that f has no stationary values.
(c) Does the graph of f havee any points of inflexion? Justify your answer.
(d) Sketch the graph of the inverse function, f^{-1}. State the asymptotes and domain of f^{-1}.
14. (a) Find an equation of the plane π_{1} containing the points $A(1,0,3)$, $B(0,2,-1)$ and $C(1,1,0)$.
Calculate the size of the acute angle between π_{1} and the plane π_{2} with equation $x+y-z=0$.
(b) Find the point of intersection of plane π_{2} and the line

$$
\frac{x-11}{4}=\frac{y-15}{5}=\frac{z-12}{2}
$$

15. (a) A mathematical biologist believes that the differential equation $x \frac{d y}{d x}-3 y=x^{4}$ models a process. Find the general solution of the differential equation.

Given that $y=2$ when $x=1$, find the particular solution, expressing y in terms of x.
(b) The biologist subsequently decides that a better model is given by the equation $y \frac{d y}{d x}-3 x=x^{4}$.

Given that $y=2$ when $x=1$, obtain y in terms of x.
16. (a) Obtain the sum of the series $8+11+14+\ldots+56$.
(b) A geometric sequence of positive terms has first term 2, and the sum of the first three terms is 266 . Calculate the common ratio.
(c) An arithmetic sequence, A, has first term a and common difference 2, and a geometric sequence, B, has first term a and common ratio 2 . The first four terms of each sequence have the same sum. Obtain the value of a.

Obtain the smallest value of n such that the sum to n terms for sequence B is more than twice the sum to n terms for sequence A.
[END OF QUESTION PAPER]

