Section A (Mathematics 1 and 2)

All candidates should attempt this Section.

Answer all the questions.

A1. (a) Given $f(x)=x(1+x)^{10}$, obtain $f^{\prime}(x)$ and simplify your answer.
(b) Given $y=3^{x}$, use logarithmic differentiation to obtain $\frac{d y}{d x}$ in terms of x.

A2. Given that $u_{k}=11-2 k,(k \geq 1)$, obtain a formula for,$S_{n}=\sum_{k=1}^{n} u_{k}$.
Find the values of n for which $S_{n}=21$.

A3. The equation $y^{3}+3 x y=3 x^{2}-5$ defines a curve passing through the point $A(2,1)$. Obtain an equation for the tangent to the curve at A.

A4. Identify the locus in the complex plane given by $|z+i|=2$.

A5. Use the substitution $x=1+\sin \theta$ to evaluate $\int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)^{3}} d \theta$.

A6. Use elementary row operations to reduce the following system of equations to upper triangular form

$$
\begin{aligned}
x+y+3 z= & 1 \\
3 x+a y+z= & 1 \\
x+y+z= & -1 .
\end{aligned}
$$

Hence express x, y and z in terms of the parameter a.
Explain what happens when $a=3$.

AT.

The diagram shows the shape of the graph of $y=\frac{x}{1+x^{2}}$. Obtain the stationary points of the graph.
Sketch the graph of $y=\left|\frac{x}{1+x^{2}}\right|$ and identify its three critical points.

A8. Given that $p(n)=n^{2}+n$, where n is a positive integer, consider the statements:
A $p(n)$ is always even
B $p(n)$ is always a multiple of 3 .
For each statement, prove it if it is true or, otherwise, disprove it.

A9. Given that $w=\cos \theta+i \sin \theta$, show that $\frac{1}{w}=\cos \theta-i \sin \theta$.
Use de Moivre's theorem to prove $w^{k}+w^{-k}=2 \cos k \theta$, where k is a natural number.

Expand $\left(w+w^{-1}\right)^{4}$ by the binomial theorem and hence show that

$$
\cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} .
$$

A10. Define $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$ for $n \geq 1$.
(a) Use integration by parts to obtain the value of $I_{1}=\int_{0}^{1} x e^{-x} d x$.
(b) Similarly, show that $I_{n}=n I_{n-1}-e^{-1}$ for $n \geq 2$.
(c) Evaluate I_{3}.

A11. The volume $V(t)$ of a cell at time t changes according to the law

$$
\frac{d V}{d t}=V(10-V) \quad \text { for } 0<V<10
$$

Show that

$$
\frac{1}{10} \ln V-\frac{1}{10} \ln (10-V)=t+C
$$

for some constant C.
Given that $V(0)=5$, show that

$$
V(t)=\frac{10 e^{10 t}}{1+e^{10 t}} .
$$

Obtain the limiting value of $V(t)$ as $t \rightarrow \infty$.

[END OF SECTION A]

Candidates should now attempt ONE of the following

Section B (Mathematics 3) on Page four
Section C (Statistics 1) on Pages five and six
Section D (Numerical Analysis 1) on Pages seven and eight
Section E (Mechanics 1) on Pages nine, ten and eleven.

Section B (Mathematics 3)

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

Answer all the questions.
Answer these questions in a separate answer book, showing clearly the section chosen.

B1. Find the point of intersection of the line

$$
\frac{x-3}{4}=\frac{y-2}{-1}=\frac{z+1}{2}
$$

and the plane with equation $2 x+y-z=4$.

B2. The matrix A is such that $A^{2}=4 A-3 I$ where I is the corresponding identity matrix. Find integers p and q such that

$$
A^{4}=p A+q I .
$$

B3. A recurrence relation is defined by the formula

$$
x_{n+1}=\frac{1}{2}\left\{x_{n}+\frac{7}{x_{n}}\right\} .
$$

Find the fixed points of this recurrence relation.

B4. Obtain the Maclaurin series for $f(x)=\sin ^{2} x$ up to the term in x^{4}.
Hence write down a series for $\cos ^{2} x$ up to the term in x^{4}.

B5. (a) Prove by induction that for all natural numbers $n \geq 1$

$$
\sum_{r=1}^{n} 3\left(r^{2}-r\right)=(n-1) n(n+1)
$$

(b) Hence evaluate $\sum_{r=11}^{40} 3\left(r^{2}-r\right)$.

B6. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{x}
$$

given that $y=2$ and $\frac{d y}{d x}=1$, when $x=0$.

