Section A (Mathematics 1 and 2)

Marks

2

2.2

4

3

All candidates should attempt this Section.

Answer all the questions.

A1.	(a) Given $f(x) = x(1 + x)^{10}$, obtain $f'(x)$ and simplify your answer.	3
	(b) Given $y = 3^x$, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x.	3
A2.	Given that $u_k = 11 - 2k$, $(k \ge 1)$, obtain a formula for $S_n = \sum_{k=1}^n u_k$. Find the values of <i>n</i> for which $S_n = 21$.	3 2
A3.	The equation $y^3 + 3xy = 3x^2 - 5$ defines a curve passing through the point A (2, 1). Obtain an equation for the tangent to the curve at A .	4
A4.	Identify the locus in the complex plane given by $ z+i =2$.	3
A5.	Use the substitution $x = 1 + \sin \theta$ to evaluate $\int_0^{\pi/2} \frac{\cos \theta}{(1 + \sin \theta)^3} d\theta$.	5

A6. Use elementary row operations to reduce the following system of equations to upper triangular form

Hence express x, y and z in terms of the parameter a.

Explain what happens when a = 3.

2003

The diagram shows the shape of the graph of $y = \frac{x}{1+x^2}$. Obtain the stationary points of the graph.

Sketch the graph of $y = \left| \frac{x}{1+x^2} \right|$ and identify its three critical points.

A7.

Marks

4

1

3

5

3

4

3

A8. Given that $p(n) = n^2 + n$, where n is a positive integer, consider the statements:

- A p(n) is always even
- B p(n) is always a multiple of 3.

For each statement, prove it if it is true or, otherwise, disprove it.

A9. Given that
$$w = \cos \theta + i \sin \theta$$
, show that $\frac{1}{m} = \cos \theta - i \sin \theta$.

Use de Moivre's theorem to prove $w^k + w^{-k} = 2\cos k\theta$, where k is a natural number.

Expand $(w + w^{-1})^4$ by the binomial theorem and hence show that

$$\cos^4\theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}.$$

A10. Define $I_n = \int_0^1 x^n e^{-x} dx$ for $n \ge 1$.

C

- (a) Use integration by parts to obtain the value of $I_1 = \int_0^1 x e^{-x} dx$.
- (b) Similarly, show that $I_n = nI_{n-1} e^{-1}$ for $n \ge 2$.
- (c) Evaluate I_3 .

A11. The volume V(t) of a cell at time t changes according to the law

$$\frac{dV}{dt} = V(10 - V) \qquad \text{for } 0 < V < 10.$$

Show that

 $\frac{1}{10}\ln V - \frac{1}{10}\ln(10 - V) = t + C$

for some constant C.

Given that V(0) = 5, show that

$$V(t) = \frac{10e^{10t}}{1+e^{10t}}.$$

Obtain the limiting value of V(t) as $t \to \infty$.

[END OF SECTION A]

Candidates should now attempt ONE of the following

Section B (Mathematics 3) on Page four Section C (Statistics 1) on Pages five and six Section D (Numerical Analysis 1) on Pages seven and eight Section E (Mechanics 1) on Pages nine, ten and eleven.

TITTE OTAT

2

3

4

Section B (Mathematics 3)

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

B1. Find the point of intersection of the line

$$\frac{x-3}{4} = \frac{y-2}{-1} = \frac{z+1}{2}$$

and the plane with equation 2x + y - z = 4.

B2. The matrix A is such that $A^2 = 4A - 3I$ where I is the corresponding identity matrix. Find integers p and q such that

$$A^4 = pA + qI.$$

B3. A recurrence relation is defined by the formula

$$x_{n+1} = \frac{1}{2} \left\{ x_n + \frac{7}{x_n} \right\}.$$

Find the fixed points of this recurrence relation.

B4. Obtain the Maclaurin series for $f(x) = \sin^2 x$ up to the term in x^4 . Hence write down a series for $\cos^2 x$ up to the term in x^4 .

B5. (a) Prove by induction that for all natural numbers $n \ge 1$

$$\sum_{r=1}^{n} 3(r^2 - r) = (n - 1)n(n + 1).$$

(b) Hence evaluate
$$\sum_{r=11}^{40} 3(r^2 - r)$$
.

B6. Solve the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x,$$

given that y = 2 and $\frac{dy}{dx} = 1$, when x = 0.

[END OF SECTION B]

Page four

Marks

4

4

4

4

2

3