$$
\text { Make Leaf Calculations }
$$

Having determined which calculations are needed, I can solve problems involving
whole numbers using a range of methods, sharing my approaches and solutions with
others.

Use leaves to represent numbers in calculations.
Make a collection of leaves and arrange into groups according to shape.. Study their outlines and assign a value to each leaf type according to the complexity of its shape. Some are very simple like beech leaves (a simple oval giving it a value of 1) and others more complex like horse chestnut (has 5 'fingers' so give it a value of 5). To see the variety of leaf shapes you might find see https://www.woodlandtrust.org.uk/media/48345/leaf-idsheet.pdf

Once you have decided on values for your leaf types, draw a leaf outline for each group and write the value you have given it in the centre. Refer to this as you work out and create some calculations for yourself or challenge a partner.

Here are some to get you thinking.
3 beech leaves is the same as $3 \times 1=3$; 3 chestnut leaves is the same as $3 \times 5=15$

Using the values you have given the leaves, use addition, subtraction, multiplication or division to make a calculation with the total 23 , for example.

I can apply my knowledge of number facts to solve problems where an unknown value is represented by a symbol or letter. MTH 2-15a

If 7 beech leaves $+?=10$, what is the missing value .

Angles in Nature
I have investigated angles in the environment, and can discuss, describe and classify angles using appropriate mathematical vocabulary.

MTH 2-17a
Find and classify the angles made between tree trunk and branches, between branches and twig.
Select a single tree to study. Look at the angles formed by branches meeting the tree trunk and twigs meeting the branches. Be aware that 2 angles will have been formed. Use a tally sheet to record the number of the different types of angle (right, acute, obtuse, reflex, straight) Which angle is the most common? Compare with findings from another tree.

I can accurately measure and draw angles using appropriate equipment, applying my skills to problems in context.
MTH 2-17b
Select instruments and measure angles
What instruments would be appropriate for measuring angles? Do you need instruments to classify angles?

If you have equipment, check some of the angles you have identified.

I have carried out investigations and surveys, devising and using a variety of methods to gather information and have worked with others to collate, organise and communicate the results in an appropriate way.MNU 2-20b

Compare angles found on a different tree
With a partner who has studied a different tree, compare results. Are there similarities or differences? What accounts for the similarities and differences?

Exploring and Creating Symmetry
I can illustrate the lines of symmetry for a range of 2D shapes and apply my understanding to create and complete symmetrical pictures and patterns. MTH 2-19a / MTH 3-19a

Identify the line of symmetry in a leaf
Many leaf shapes have (at first glance) mirror symmetry. Check, are the leaves you have found symmetrical? Can you suggest why they do not always have perfect symmetry?

Make your own pictures and designs which display 1. Mirror 2. Rotational symmetry
Using a collections of leaves, nuts, seeds and sticks collected from the ground, create your own designs or pictures which display rotational and mirror symmetry. Examples:
https://creativestarlearning.co.uk/art-music-outdoors/wet-weather-symmetrical-nature-circles/

Extension: Maths in Nature - Symmetry

Starfish display rotational symmetry. Scientists believe that their symmetry gives them an advantage when attacking prey. Can you make suggestions for how rotational symmetry helps starfish?
Can you suggest other reasons for symmetry in nature?

Estimating and Rounding
I can use my knowledge of rounding to routinely estimate the answer to a problem then, after calculating, decide if my answer is reasonable, sharing my solution with others.

MNU 2-01a
Estimate and calculate the number of leaves/twigs on a tree. Stand so that you can see the whole tree at once. Use view finder to view a section of the tree leaves/twigs. Count what you see through the frame. How many frames would you need to view the entire tree? Multiply your leaf/twig count by the number frames you would need. This will give you the approximate number of leaves or twigs on the whole tree. Why would scientists find this way of counting useful? What could they learn from these estimations?
Viewfinder
Sheet of paper, fold in $1 / 2$, cut out a smaller rectangle from the centre and
 unfold.

