Introduction to Science.

phillipmartin.info

Target: I can accurately measure distance

Distance

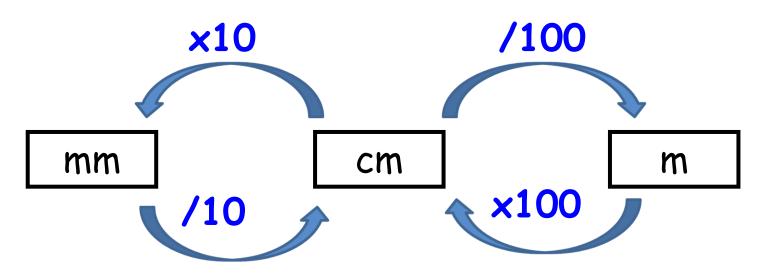
Real scientists need to be able to measure things properly. One of the things we have to measure is distance:

- What does 'distance' mean?
 How would you measure distance?
- •What apparatus would you use?
- •What units would you use?
- •Why do we have to use units?

Measuring Distance

• To measure distance there are a variety of different measuring instruments:

Metre stick



Trundle wheel

Units for Distance

Units	Conversion		
Metre (m)	1m = 100cm = 1000mm		
Centimetre (cm)	1cm= 1/100 of a metre		
Millimetre (mm)	1mm= 1/1000 of a metre		

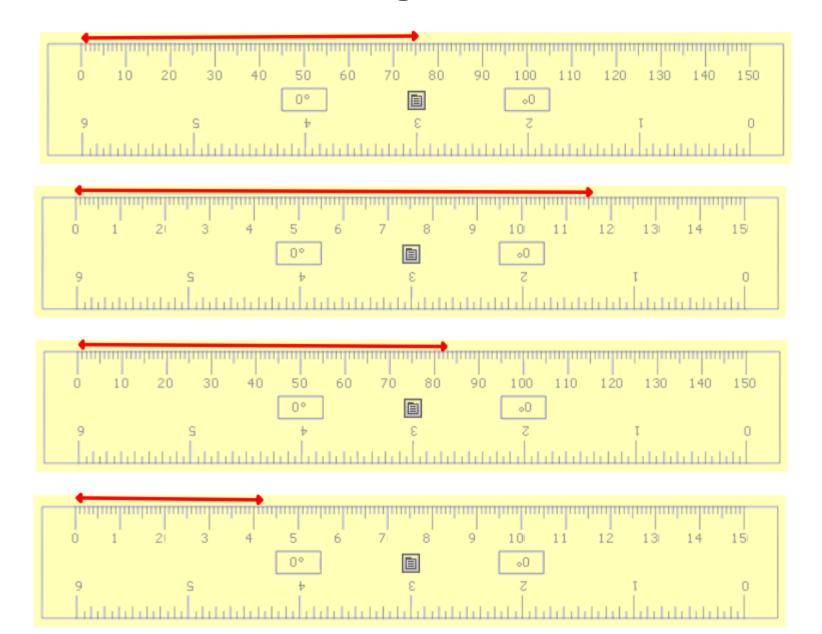
Measuring Distance

Quantity	Answer	Units
Length of Science Corridor		
My height		
Height of stool		
Width of jotter		
Length of paper clip		
Width of door		

Converting units of distance

Millimetres (mm)	Centimetres (cm)	Metres (m)
	27	
		1.50
1800		
	500	
		0.75

Converting units of distance


Millimetres (mm)	Centimetres (cm)	Metres (m)
270	27	0.27
1500	150	1.50
1800	180	1.8
5000	500	5.0
750	75	0.75

Match the following measurments, measuring instruments and units in a table in your jotter.

Object	instrument	units
length of pen		
	meter stick	
width of textbook		
	trundle wheel	
height of desk		m/cm
	meter stick	m

teacher's height length of playing field	ruler ruler	cm m/cm m
length of classroom	meter stick	cm

What are the readings on the rulers below:

Target: I can accurately measure mass and volume

Mass

 'Mass' means how much there is of something. The more mass something has, the heavier it is.

What units do we use to measure mass?
What equipment do we use to measure mass?

Measuring Mass

- An electronic balance measures in grams (g) which is the unit of mass.
- Heavier objects may be measured in kilograms (kg).

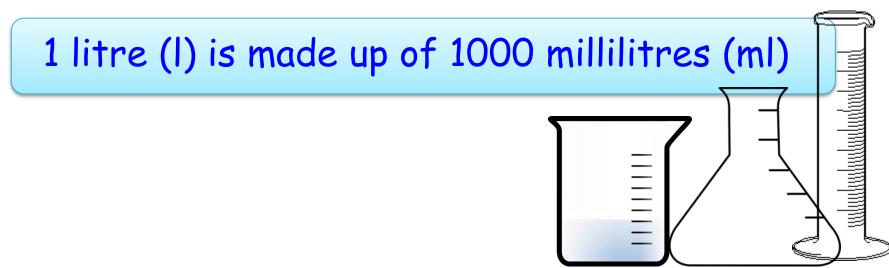
1 kilogram is made up of 1000 grams

Measuring Mass

Quantity	Mass (g)
Science jotter	
Pencil	
Mobile phone	
3 sheets of paper	
Block of wood	

Converting units of mass

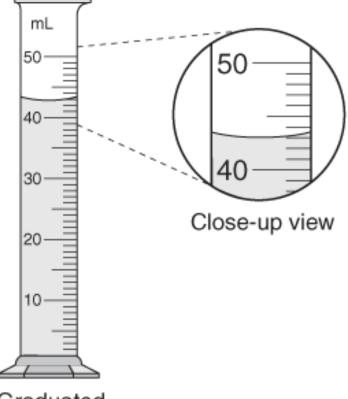
Mass (g)	Mass (kg)
2	
	4
350	
	0.0255
2452	


Converting units of mass

Mass (g)	Mass (kg)		
2	0.002		
4000	4		
350	0.350		
25.5	0.0255		
2452	2.452		

Target: I can accurately measure volume

- 'Volume' is a measure of the space that something takes up.
- The volume of a liquid is measured in litres (l) or millilitres (ml). You may also see it written as cm³.(cubic centimetres)



<u>Measuring Volume of Liquids</u>

• The piece of equipment used for measuring volume of liquids is a measuring cylinder or beaker.

Using a measuring cylinder:

- If you look closely, you will see that the liquid in a measuring cylinder does not lie in a straight line, instead it makes a slight dip. This is called the 'meniscus'.
- When you read the scale on a measuring cylinder, you record where the lowest point of the Graduated cylinder

Volume of liquids

Quantity	Volume (ml)
Test tube	
Boiling tube	
400ml beaker	
Small beaker	
Small measuring cylinder	

Target: I can accurately measure time

Measuring Time

- A stop clock (or digital timer) is used to measure time accurately.
- The units are minutes (min) and seconds (s).

DIGITAL TIMER Count Down/Up
5959
RESET
000
MIN SEC START/STOP

This would be written as 59 min 59s.

Measuring Time

How long	Time 1 (s)	Time 2 (s)	Average Time (s)
Can hold your breathe			
Can whistle without a breath			
Wind up toy to stop			
Spinner to fall to ground			
Write your name five times			
It takes to clip five paper clips together			

Calculating averages

 To calculate an average you simply add up all the numbers and divide by the number of samples/values given.

14

Target: Measure temperature accurately

Temperature

- Temperature is measured with a thermometer.
- It is measured in degrees celsius (°C).

√

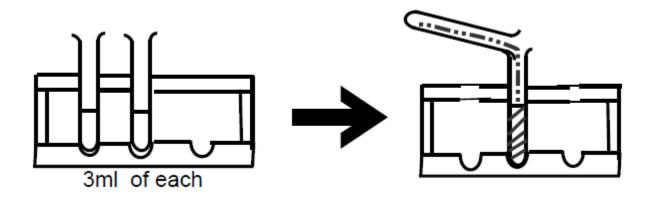
- A simple thermometer is a glass tube filled with coloured alcohol, and a scale going up the side.
- When the liquid heats up, it expands, and the liquid level moves up the scale.

Measuring Temperature

What I measured	Estimated temp (°C)	Actual temp (°C)
Iced water		
Tap water		
Water hot tap		
Room temperature		
Boiled water		

Target: I can identify signs of a chemical reaction

Signs of a chemical reaction


<u>Aim</u>: To identify signs of a chemical reaction.

Additional Info:

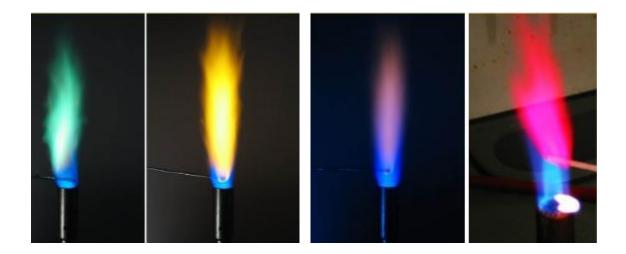
You are going to observe and report on changes which take place when you mix different chemicals together. Each member of your group needs to practise measuring, mixing and reporting.

Method:

- 1. Choose 2 different chemicals
- 2. Measure 3 ml of each into a clean test tube
- 3. Mix the two chemicals
- 4. One member of the group tells the rest of the group what changes are taking place
- 5. Record the names of the chemical and your observations in the table below in your jotter.

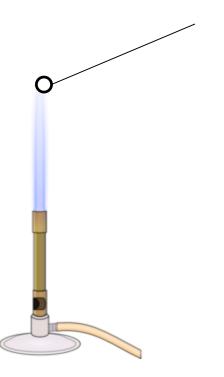
Chemical 1	Chemical 2	Observations
Magnesium	Hydrochloric acid	
Magnesium	Copper sulphate	
Sodium carbonate	Lead nitrate	
Copper sulphate	Sodium carbonate	

Chemical 1	Chemical 2	Observations
Magnesium	Hydrochloric acid	Bubbles of gas, magnesium dissolved
Magnesium	Copper sulphate	Bubbles of gas, magnesium dissolved, red solid
Sodium carbonate	Lead nitrate	Colour change (white), bubbles of gas, white solid formed.
Copper sulphate	Sodium carbonate	Colour change (milky blue), bubbles of gas, temperature change (colder).


The signs of a chemical reaction can be detected by our senses:

- -hear (crackling etc)
- -see (bubbles of gas, colour change)
- -feel (temperature change)
- -smell (gas production)

Target: I can identify chemicals burned in the flame


Flame tests

- Different metals burn with different coloured flames.
- If metals are mixed into solutions they can be tested in a bunsen burner.

Method:

- Burn 4 different metals in the bunsen flame and record the colours of the flame.
- Test 4 unknown samples, and identify what metal may be present in the sample

Results:

Metal	Flame Colour
Copper	
Barium	
Strontium	
Sodium	

Metal	Flame Colour
A	
В	
С	
D	

Metal	Flame Colour
Copper	Blue/Green
Barium	Yellow/Green
Strontium	Red
Sodium	Orange/Yellow

Metal	Flame Colour
A	Orange/ Yellow (sodium)
В	Yellow/Green (barium)
С	Blue/Green (copper)
D	Red (strontium)

Target: I can complete a formatives assessment

Formative Task

Experiment	Substances	Sign(s) of Reaction
1	vinegar and baking soda	
2	calcium and water	
3	heat copper carbonate	
4	zinc into copper sulphate	
5	sodium carbonate and nickel sulphate	