

Solution to "Almost the Olympic Rings"

This could, of course, be reversed: 4, 2, 3, 1,5
One possible solution to "The Olympic Rings"
This solution gives a total of 11 in each ring (which could also be reversed ($9,2, \ldots, 3,8$)). There are many other solutions to this challenge, including at least one in which:

- Rings total to 12
- Rings total to 13
- Rings total to 14

I'll be delighted to hear from any pupil or staff who can come up with these or, indeed, any other solutions...

